Bounds for the Extreme Zeros of Laguerre Polynomials | SpringerLink
Skip to main content

Bounds for the Extreme Zeros of Laguerre Polynomials

  • Conference paper
  • First Online:
Numerical Methods and Applications (NMA 2018)

Abstract

By applying well-known techniques such as the Gershgorin Circle Theorem and the Euler-Rayleigh method (the latter assisted by some computer algebra), we obtain new bounds for the extreme zeroes of the n-th Laguerre polynomial. It turns out that these bounds are competitive to some of the known best bounds.

Supported by the Bulgarian National Research Fund under Contract DN 02/14 and by the Sofia University Research Fund under Contract 80-10-139/2018.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bottema, Q.: Die Nullstellen gewisser durch Rekursionsformeln definierter Polynome. Proc. Amsterdam 34(5), 681–691 (1931)

    MATH  Google Scholar 

  2. Chihara, T.: An Introduction to Orthogonal Polynomials. Gorn and Breach, New York (1978)

    MATH  Google Scholar 

  3. Dimitrov, D.K., Nikolov, G.P.: Sharp bounds for the extreme zeros of classical orthogonal polynomials. J. Approx. Theory 162, 1793–1804 (2010)

    Article  MathSciNet  Google Scholar 

  4. Driver, K., Jordaan, K.: Bounds for extreme zeros of some classical orthogonal polynomials. J. Approx. Theory 164, 1200–1204 (2012)

    Article  MathSciNet  Google Scholar 

  5. Driver, K., Jordaan, K.: Inequalities for extreme zeros of some classical orthogonal and \(q\)-orthogonal polynomials. Math. Model. Nat. Phenom. 8(1), 48–59 (2013)

    Article  MathSciNet  Google Scholar 

  6. Gupta, D.P., Muldoon, M.E.: Inequalities for the smallest zeros of Laguerre polynomials and their \(q\)-analogues. J. Ineq. Pure Appl. Math. 8(1) (2007). Article 24

    Google Scholar 

  7. Hahn, W.: Bericht über die Nullstellen der Laguerreschen und der Hermiteschen Polynome. Jahresber. Deutsch. Math.-Ferein. 44, 215–236 (1933)

    MATH  Google Scholar 

  8. Ismail, M.E.H., Muldoon, M.E.: Bounds for the small real and purelyimaginary zeros of Bessel and related functions. Met. Appl. Math. Appl. 2, 1–21 (1995)

    MATH  Google Scholar 

  9. Ismail, M.E.H., Li, X.: Bounds on the extreme zeros of orthogonal polynomials. Proc. Amer. Math. Soc. 115, 131–140 (1992)

    Article  MathSciNet  Google Scholar 

  10. Krasikov, I.: Bounds for zeros of the Laguerre polynomials. J. Approx. Theory 121, 287–291 (2003)

    Article  MathSciNet  Google Scholar 

  11. Neumann, E.R.: Beiträge zur Kenntnis der Laguerreschen Polynome. Jahresber. Deutsch. Math.-Ferein 30, 15–35 (1921)

    MATH  Google Scholar 

  12. Szegő, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society Colloquium Publications, Providence (1975)

    MATH  Google Scholar 

  13. Van der Waerden, B.L.: Modern Algebra, vol. 1. Frederick Ungar Publishing Co., New York (1949)

    Google Scholar 

  14. van Dorn, E.: Representations and bounds for zeros of orthogonal polynomials and eigenvalues of sign-symmetric tri-diagonal matrices. J. Approx. Theory 51, 254–266 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rumen Uluchev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nikolov, G., Uluchev, R. (2019). Bounds for the Extreme Zeros of Laguerre Polynomials. In: Nikolov, G., Kolkovska, N., Georgiev, K. (eds) Numerical Methods and Applications. NMA 2018. Lecture Notes in Computer Science(), vol 11189. Springer, Cham. https://doi.org/10.1007/978-3-030-10692-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10692-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10691-1

  • Online ISBN: 978-3-030-10692-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics