Abstract
By applying well-known techniques such as the Gershgorin Circle Theorem and the Euler-Rayleigh method (the latter assisted by some computer algebra), we obtain new bounds for the extreme zeroes of the n-th Laguerre polynomial. It turns out that these bounds are competitive to some of the known best bounds.
Supported by the Bulgarian National Research Fund under Contract DN 02/14 and by the Sofia University Research Fund under Contract 80-10-139/2018.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bottema, Q.: Die Nullstellen gewisser durch Rekursionsformeln definierter Polynome. Proc. Amsterdam 34(5), 681–691 (1931)
Chihara, T.: An Introduction to Orthogonal Polynomials. Gorn and Breach, New York (1978)
Dimitrov, D.K., Nikolov, G.P.: Sharp bounds for the extreme zeros of classical orthogonal polynomials. J. Approx. Theory 162, 1793–1804 (2010)
Driver, K., Jordaan, K.: Bounds for extreme zeros of some classical orthogonal polynomials. J. Approx. Theory 164, 1200–1204 (2012)
Driver, K., Jordaan, K.: Inequalities for extreme zeros of some classical orthogonal and \(q\)-orthogonal polynomials. Math. Model. Nat. Phenom. 8(1), 48–59 (2013)
Gupta, D.P., Muldoon, M.E.: Inequalities for the smallest zeros of Laguerre polynomials and their \(q\)-analogues. J. Ineq. Pure Appl. Math. 8(1) (2007). Article 24
Hahn, W.: Bericht über die Nullstellen der Laguerreschen und der Hermiteschen Polynome. Jahresber. Deutsch. Math.-Ferein. 44, 215–236 (1933)
Ismail, M.E.H., Muldoon, M.E.: Bounds for the small real and purelyimaginary zeros of Bessel and related functions. Met. Appl. Math. Appl. 2, 1–21 (1995)
Ismail, M.E.H., Li, X.: Bounds on the extreme zeros of orthogonal polynomials. Proc. Amer. Math. Soc. 115, 131–140 (1992)
Krasikov, I.: Bounds for zeros of the Laguerre polynomials. J. Approx. Theory 121, 287–291 (2003)
Neumann, E.R.: Beiträge zur Kenntnis der Laguerreschen Polynome. Jahresber. Deutsch. Math.-Ferein 30, 15–35 (1921)
Szegő, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society Colloquium Publications, Providence (1975)
Van der Waerden, B.L.: Modern Algebra, vol. 1. Frederick Ungar Publishing Co., New York (1949)
van Dorn, E.: Representations and bounds for zeros of orthogonal polynomials and eigenvalues of sign-symmetric tri-diagonal matrices. J. Approx. Theory 51, 254–266 (1987)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Nikolov, G., Uluchev, R. (2019). Bounds for the Extreme Zeros of Laguerre Polynomials. In: Nikolov, G., Kolkovska, N., Georgiev, K. (eds) Numerical Methods and Applications. NMA 2018. Lecture Notes in Computer Science(), vol 11189. Springer, Cham. https://doi.org/10.1007/978-3-030-10692-8_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-10692-8_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-10691-1
Online ISBN: 978-3-030-10692-8
eBook Packages: Computer ScienceComputer Science (R0)