Abstract
In the Tough Snake Robot Systems Group, a snake robot without wheels (nonwheeled-type snake robot) and a snake robot with active wheels (wheeled snake robot) have been developed. The main target applications of these snake robots are exploration of complex plant structures, such as the interior and exterior of pipes, debris, and even ladders, and the inspection of narrow spaces within buildings, e.g., roof spaces and underfloor spaces, which would enable plant patrol and inspection. At the head of each robot, a compact and lightweight gripper is mounted to allow the robot to grasp various types of objects, including fragile objects. To measure the contact force of each robot, a whole-body tactile sensor has been developed. A sound-based online localization method for use with the in-pipe snake robot has also been developed. To enable teleoperation of platform robots with the sensing system and the gripper, a human interface has also been developed. The results of some experimental demonstrations of the developed tough snake robot systems are presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ariizumi, R., Matsuno, F.: Dynamic analysis of three snake robot gaits. IEEE Trans. Robot. 33(5), 1075–1087 (2017)
Baba, T., Kameyama, Y., Kamegawa, T., Gofuku, A.: A snake robot propelling inside of a pipe with helical rolling motion. In: SICE Annual Conference, pp. 2319–2325 (2010)
Banconand, G., Huber, B.: Depression and grippers with their possible applications. In: 12th International Symposium for Immunology of Reproduction (ISIR), pp. 321–329 (1982)
Bando, Y., Itoyama, K., Konyo, M., Tadokoro, S., Nakadai, K., Yoshii, K., Okuno, H.G.: Microphone-accelerometer based 3D posture estimation for a hose-shaped rescue robot. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5580–5586 (2015). https://doi.org/10.1109/IROS.2015.7354168
Bando, Y., Suhara, H., Tanaka, M., Kamegawa, T., Itoyama, K., Yoshii, K., Matsuno, F., Okuno, H.G.: Sound-based online localization for an in-pipe snake robot. In: 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR2016), pp. 207–213 (2016). https://doi.org/10.1109/SSRR.2016.7784300
Bark, C., Binnenbose, T., Vogele, G., Weisener, T., Widmann, M.: In: In: MEMS 98. IEEE Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems, pp. 301–305 (1998)
Biagiotti, L., Lotti, F., Melchiorri, C., Vassura, G.: Mechatronic design of innovative fingers for anthropomorphic robot hands. In: 2003 IEEE International Conference on Robotics and Automation (ICRA), pp. 3187–3192(2003)
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959). https://doi.org/10.1007/BF01386390
Dollar, A.M., Howe, R.D.: A robust compliant grasper via shape deposition manufacturing. IEEE/ASME Trans. Mech. 11(2), 154–161 (2006)
Dollar, A.M., Howe, R.D.: Simple, : robust autonomous grasping in unstructured environments. In: 2007 IEEE International Conference on Robotics and Automation (ICRA), pp. 4693–4700 (2007)
Fujita, T., Shimada, K.: Characteristics and applications of magnetorheological fluids. J.-Magn. Soc. Jpn. 27(3), 91–100 (2003)
Fujita, M., Tadakuma, K., Komatsu, H., Takane, E., Nomura, A., Ichimura, T., Konyo, M., Tadokoro, S.: Jamming layered membrane gripper mechanism for grasping differently shaped-objects without excessive pushing force for search and rescue. Adv. Robot. 32(11), 590–604 (2018). https://doi.org/10.1080/01691864.2018.1451368
Hansen, P., Alismail, H., Rander, P., Browning, B.: Pipe mapping with monocular fisheye imagery. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5180–5185(2013). https://doi.org/10.1109/IROS.2013.6697105
Hasegawa, H., Suzuki, Y., Ming, A., Koyama, K., Ishikawa, M., Shimojo, M.: Net-structure proximity sensor: high-speed and free-form sensor with analog computing circuit. IEEE/ASME Trans. Mech. 20(6), 3232–3241 (2015)
Hayashi, M., Sagisaka, T., Ishizaka, Y., Yoshikai, T., Inaba, M.: Development of functional whole-body flesh with distributed three-axis force sensors to enable close interaction by humanoids. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3610–3615 (2007). https://doi.org/10.1109/IROS.2007.4399360
Hirose, S.: Biologically Inspired Robots: Snake-Like Locomotor and Manipulator. Oxford University Press, Oxford, UK (1987)
Hirose, S., Umetani, Y.: Development of soft gripper for the versatile robot hand. Mech. Mach. Theory 13, 351–359 (1978)
Ho, C., Muammer, K.: Design and feasibility tests of a flexible gripper based on inflatable rubber pockets. Int. J. Mach. Tools Manuf. 46(12), 1350–1361 (2006)
Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., Whitesides, G.M.: Soft robotics for chemists. Angew. Chem. 123(8), 1930–1935 (2011)
ISO: Safety of machinery - Permanent means of access to machinery - Part 3: stairs, stepladders and guard-rails. ISO 14122-3 (2001)
Jacoff, A.: Standard test methods for response robots. ASTM International Standards Committee on Homeland Security Applications; Operational Equipment; Robots (E54.08.01) (2016)
Kamegawa, T., Yamasaki, T., Igarashi, H., Matsuno, F.: Development of the snake-like rescue robot KOHGA. In: 2004 IEEE International Conference on Robotics and Automation (ICRA), pp. 5081–5086 (2004)
Kamegawa, T., Harada, T., Gofuku, A.: Realization of cylinder climbing locomotion with helical form by a snake robot with passive wheels, In: 2009 IEEE International Conference on Robotics and Automation (ICRA), pp. 3067–3072 (2009)
Kawasaki, H., Komatsu, T., Uchiyama, K.: Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II. IEEE/ASME Trans. Mech. 7(3), 296–303 (2002). https://doi.org/10.1109/TMECH.2002.802720
Kim, D.Y., Kim, J., Kim, I., Jun, S.: Artificial landmark for vision-based SLAM of water pipe rehabilitation robot. In: 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI2015), pp. 444–446 (2015). https://doi.org/10.1109/URAI.2015.7358900
Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech Signal Process. 24(4), 320–327 (1976). https://doi.org/10.1109/TASSP.1976.1162830
Kon, K., Tanaka, M., Tanaka, K.: Mixed integer programming based semi-autonomous step climbing of a snake robot considering sensing strategy. IEEE Trans. Control Syst. Tech. 24(1), 252–264 (2016). https://doi.org/10.1109/TCST.2015.2429615
Kouno, K., Yamada, H., Hirose, S.: Development of active-joint active-wheel high traversability snake-like robot ACM-R4.2. J. Robot. Mech. 25(3), 559–566 (2013)
Krys, D., Najjaran, H.: Development of visual simultaneous localization and mapping (VSLAM) for a pipe inspection robot. In: 2007 International Symposium on Computational Intelligence in Robotics and Automation (CIRA2007), pp. 344–349 (2007). https://doi.org/10.1109/CIRA.2007.382850
Liljeback, P., Pettersen, K.Y., Stavdahl, O., Gravdahl, J.T.: Snake Robots. Springer, Berlin (2013)
Lim, H., Choi, J.Y., Kwon, Y.S., Jung, E.-J., Yi, B.-J.: SLAM in indoor pipelines with 15mm diameter. In: 2008 IEEE International Conference on Robotics and Automation (ICRA2008), pp. 4005–4011 (2008). https://doi.org/10.1109/ROBOT.2008.4543826
Maruyama, R., Watanabe, T., Uchida, M.: Delicate grasping by robotic gripper with incompressible fluid-based deformable fingertips. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5469–5474(2013)
Monkman, G.J., Hesse, S., Steinmann, R., Schunk, H.: Robot Grippers. Wiley, New York (2007)
Murphy, R.R.: Disaster Robotics. MIT Press, Cambridge (2014)
Murtra, A.C., Tur, J.M.M.: IMU and cable encoder data fusion for in-pipe mobile robot localization. In: 2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA2013), pp. 1–6 (2013). https://doi.org/10.1109/TePRA.2013.6556377
N\(\acute{u}\tilde{n}\)ez, C.G., Navaraj, W.T., Polat, E.O., Dahiya, R.: Energy-autonomous, flexible, and transparent tactile skin. Adv. Funct. Mater. 27(18) (2017). https://doi.org/10.1002/adfm.201606287
Ohashi, T., Yamada, H., Hirose, S.: Loop forming snake-like robot ACM-R7 and its serpenoid oval control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 413–418(2010). https://doi.org/10.1109/IROS.2010.5651467
Okatani, Y., Nishida, T., Tadakuma, K.: Development of universal robot gripper using MR\(\alpha \) fluid. In: 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS), pp. 231–235 (2014)
Pettersson, A., Davis, S., Gray, J.O., Dodd, T.J., Ohlsson, T.: Design of a magnetorheological robot gripper for handling of delicate food products with varying shapes. J. Food Eng. 98(3), 332–338 (2010)
Qi, W., Kamegawa, T., Gofuku, A.: Helical wave propagate motion on a vertical pipe with a branch for a snake robot. In: 2nd International Symposium on Swarm Behavior and Bio-Inspired Robotics (SWARM2017), pp. 105–112 (2017)
Rollinson, D., Choset, H.: Pipe network locomotion with a snake robot. J. Field Robot. 33(3), 322–336 (2016)
Rollinson, D., Buchan, A., Choset, H.: Virtual chassis for snake robots: definition and applications. Adv. Robot. 26(17), 2043–2064 (2012). http://dblp.uni-trier.de/db/journals/ar/ar26.html#RollinsonBC12
Romano, J.M., Hsiao, K., Niemeyer, G., Chitta, S., Kuchenbecker, K.J.: Human-inspired robotic grasp control with tactile sensing. IEEE Trans. Robot. 27(6), 1067–1079 (2011). https://doi.org/10.1109/TRO.2011.2162271
Shimojo, M., Araki, T., Teshigawara, S., Ming, A., Ishikawa, M.: A net-structure tactile sensor covering free-form surface and ensuring high-speed response. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 670–675 (2007). https://doi.org/10.1109/IROS.2007.4399084
Suzuki, Y.: Multilayered center-of-pressure sensors for robot fingertips and adaptive feedback control. IEEE Robot. Autom. Lett. 2(4), 2180–2187 (2017). https://doi.org/10.1109/LRA.2017.2723469
Suzuki, Y., Asano, F., Kim, H.-Y., Sone, T.: An optimum computer-generated pulse signal suitable for the measurement of very long impulse responses. J. Acoust. Soc. Am. 97(2), 1119–1123 (1995). https://doi.org/10.1121/1.412224
Takemori, T., Tanaka, M., Matsuno, F.: Gait design for a snake robot by connecting curve segments and experimental demonstration. IEEE Trans. Robot. PP-99, 1–8 (2018). https://doi.org/10.1109/TRO.2018.2830346
Takemori, T., Tanaka, M., Matsuno, F.: Ladder climbing with a snake robot. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018)
Tanaka, M., Matsuno, F.: Control of snake robots with switching constraints: trajectory tracking with moving obstacle. Adv. Robot. 28(6), 415–419 (2014). https://doi.org/10.1080/01691864.2013.867285
Tanaka, M., Matsuno, F.: Modeling and control of head raising snake robots by using kinematic redundancy. J. Intell. Robot. Syst. 75(1), 53–69 (2014). https://doi.org/10.1007/s10846-013-9866-y
Tanaka, M., Tanaka, K.: Control of a snake robot for ascending and descending steps. IEEE Trans. Robot. 31(2), 511–520 (2015). https://doi.org/10.1109/TRO.2015.2400655
Tanaka, M., Kon, K., Tanaka, K.: Range-sensor-based semiautonomous whole-body collision avoidance of a snake robot. IEEE Trans. Control Syst. Tech. 23(5), 1927–1934 (2015). https://doi.org/10.1109/TCST.2014.2382578
Tanaka, M., Nakajima, M., Tanaka, K.: Smooth control of an articulated mobile robot with switching constraints. Adv. Robot. 30(1), 29–40 (2016). https://doi.org/10.1080/01691864.2015.1102646
Tanaka, M., Nakajima, M., Suzuki, Y., Tanaka, K.: Development and control of articulated mobile robot for climbing steep stairs. IEEE/ASME Trans. Mech. 23(2), 531–541 (2018). https://doi.org/10.1109/TMECH.2018.2792013
Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)
Tomo, T.P., Wong, W.K., Schmitz, A., Kristanto, H., Sarazin, A., Jamone, L., Somlor, S., Sugano, S.: A modular, distributed, soft, 3-axis sensor system for robot hands. In: IEEE-RAS 16th International Conference on Humanoid Robots, pp. 454–460(2016). https://doi.org/10.1109/HUMANOIDS.2016.7803315
Transeth, A.A., Leine, R.I., Glocker, C., Pettersen, K.Y.: Snake robot obstacle-aided locomotion: modeling, simulations and experiments. IEEE Trans. Robot. 24(1), 88–104 (2008)
Valenti, R.G., Dryanovski, I., Xiao, J.: Keeping a good attitude: a quaternion-based orientation filter for IMUs and MARGs. Sensors 15(8), 19302–19330 (2015). https://doi.org/10.3390/s150819302
Vogt, D.M., Park, Y.-L., Wood, R.J.: Design and characterization of a soft multi-axis force sensor using embedded microfluidic channels. IEEE Sens. J. 13(10), 4056–4064 (2013). https://doi.org/10.1109/JSEN.2013.2272320
Yamada, H., Hirose, S.: Study on the 3D shape of active cord mechanism. In: 2006 IEEE International Conference on Robotics and Automation (ICRA), pp. 2890–2895 (2006). https://doi.org/10.1109/ROBOT.2006.1642140
Yamada, H., Hirose, S.: Study of active cord mechanism –approximations to continuous curves of a multi-joint body. J. Robot. Soc. Jpn. (in Japanese with English summary) 26(1), 110–120 (2008)
Yamada, H., Takaoka, S., Hirose, S.: A snake-like robot for real-world inspection applications (the design and control of a practical active cord mechanism). Adv. Robot. 27(1), 47–60 (2013)
Yamaguchi, A., Atkeson, C.G.: Implementing tactile behaviors using FingerVision. In: IEEE-RAS 17th International Conference on Humanoid Robots, pp. 241–248(2017). https://doi.org/10.1109/HUMANOIDS.2017.8246881
Yatim, N.M., Shauri, R.L.A., Buniyamin, N.: Automated mapping for underground pipelines: an overview. In: 2014 2nd International Conference on Electrical, Electronics and System Engineering (ICEESE2014), pp. 77–82 (2015). https://doi.org/10.1109/ICEESE.2014.7154599
Yim, M., Duff, G.D., Roufas, D.K.: PolyBot: a modular reconfigurable robot. In: 2000 IEEE International Conference on Robotics and Automation (ICRA), pp. 514–520 (2000). https://doi.org/10.1109/ROBOT.2000.844106
Yoshikai, T., Fukushima, H., Hayashi, M., Inaba, M.: Development of soft stretchable knit sensor for humanoids’ whole-body tactile sensibility. In: IEEE-RAS 9th International Conference on Humanoid Robots, pp. 624–631(2009). https://doi.org/10.1109/ICHR.2009.5379556
Yoshikai, T., Tobayashi, K., Inaba, M.: Development of 4-axis soft deformable sensor for humanoid sensor flesh. In: IEEE-RAS 11th International Conference on Humanoid Robots, pp. 205–211 (2011). https://doi.org/10.1109/Humanoids.2011.6100905
Yoshida, K., Muto, T., Kim, J.W., Yokota, S.: An ER microactuator with built-in pump and valve. Int. J. Autom. Technol. (IJAT) 6(4), 468–475 (2012)
Yu, P., Liu, W., Gu, C., Cheng, X., Fu, X.: Flexible piezoelectric tactile sensor array for dynamic three-axis force measurement. Sensors 16(6), (2016). https://doi.org/10.3390/s16060819
Zhang, C., Florencio, D., Zhang, Z.: Why does PHAT work well in lownoise, reverberative environments? In: 2008 International Conference on Acoustics, Speech, and Signal Processing (ICASSP2008), pp. 2565–2568 (2008). https://doi.org/10.1109/ICASSP.2008.4518172
Zhu, T., Yang, H., Zhang, W.: A Spherical Self-Adaptive Gripper with shrinking of an elastic membrane. In: 2016 International Conference on Advanced Robotics and Mechatronics (ICARM), pp. 512–517 (2016)
Acknowledgements
This work was supported by Impulsing Paradigm Change through Disruptive Technologies (ImPACT) Tough Robotics Challenge program of Japan Science and Technology (JST) Agency.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Matsuno, F. et al. (2019). Development of Tough Snake Robot Systems. In: Tadokoro, S. (eds) Disaster Robotics. Springer Tracts in Advanced Robotics, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-05321-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-05321-5_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05320-8
Online ISBN: 978-3-030-05321-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)