Abstract
This article describes the design and implementation of a centralized cooperative control algorithm of mobile manipulators (mobile differential platform manipulator and an omnidirectional platform manipulator) for the execution of diverse tasks in which the participation of two or more robots is necessary, e.g., the handling or transport of objects of a high weight, keeping a platform level at a fixed height, among others. For this, a sliding mode control technique is used that is applied to a fixed operating point located in a virtual line that is generated between the end effectors of the manipulator arms. For the validation of the proposed controller, the stability criterion of Lyapunov will be used and the simulation will be performed to validate the performance and performance of the proposed controller between two heterogeneous manipulators.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ollero, A., Merino, L.: Control and perception techniques for aerial robotics. Ann. Rev. Control 28(2), 167–178 (2004)
Andaluz, V.H., et al.: Nonlinear controller of quadcopters for agricultural monitoring. In: Bebis, G., et al. (eds.) ISVC 2015. LNCS, vol. 9474, pp. 476–487. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27857-5_43
Williams, S.B., Pizarro, O., Mahon, I., Johnson-Roberson, M.: Simultaneous localisation and mapping and dense stereoscopic seafloor reconstruction using an AUV. In: Khatib, O., Kumar, V., Pappas, G.J. (eds.) Experimental Robotics. Springer Tracts in Advanced Robotics, vol. 54. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00196-3_47
Kuwata, Y., Wolf, M.T., Zarzhitsky, D., Huntsberger, T.L.: Safe maritime autonomous navigation with COLREGS, using velocity obstacles. IEEE J. Ocean. Eng. 39(1), 110–119 (2014)
Tsai, C.C., Huang, H.C., Lin, S.C.: FPGA-based parallel DNA algorithm for optimal configurations of an omnidirectional mobile service robot performing fire extinguishment. IEEE Trans. Ind. Electron. 58(3), 1016–1026 (2011)
Haddad, M., Khalil, W., Lehtihet, H.E.: Trajectory planning of unicycle mobile robots with a trapezoidal-velocity constraint. IEEE Trans. Robot. 26(5), 954–962 (2010)
Li, T.H.S., Chang, S.J.: Autonomous fuzzy parking control of a car-like mobile robot. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 33(4), 451–465 (2003)
Kanjanawanishkul, K., Zell, A.: Path following for an omnidirectional mobile robot based on model predictive control. In: IEEE International Conference on Robotics and Automation 2009, ICRA 2009, pp. 3341–3346 (2009)
Bischoff, R., Huggenberger, U., Prassler, E.: KUKA youBot - a mobile manipulator for research and education. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3–6 (2011)
White, G.D., Bhatt, R.M., Tang, C.P., Krovi, V.N.: Experimental evaluation of dynamic redundancy resolution in a nonholonomic wheeled mobile manipulator. IEEE/ASME Trans. Mechatron. 14(3), 349–357 (2009)
Zhong, G., Kobayashi, Y., Hoshino, Y., Emaru, T.: System modeling and tracking control of mobile manipulator subjected to dynamic interaction and uncertainty. Nonlinear Dyn. 73(1–2), 167–182 (2013)
Andaluz, V., Roberti, F., Toibero, J.M., Carelli, R.: Adaptive unified motion control of mobile manipulators. Control Eng. Pract. 20(12), 1337–1352 (2012)
Erhart, S., Sieber, D., Hirche, S.: An impedance-based control architecture for multi-robot cooperative dual-arm mobile manipulation. In: IEEE International Conference on Intelligent Robots and Systems, pp. 315–322 (2013)
Li, Z., Yang, C., Su, C.Y., Deng, S., Sun, F., Zhang, W.: Decentralized fuzzy control of multiple cooperating robotic manipulators with impedance interaction. IEEE Trans. Fuzzy Syst. 23(4), 1044–1056 (2015)
Andaluz, V.H., Ortiz, J.S., Pérez, M., Roberti, F., Carelli, R.: Adaptive cooperative control of multi-mobile manipulators. In: IECON Proceedings of Industrial Electronic Conference, pp. 2669–2675 (2014)
Andaluz, V.H., Molina, M.F., Erazo, Y.P., Ortiz, J.S.: Numerical methods for cooperative control of double mobile manipulators. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10463, pp. 889–898. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65292-4_77
Acknowledgements
The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia –CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017- 06; Control Coordinado Multi-operador aplicado a un robot Manipulador Aéreo; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, and Universidad Nacional de Chimborazo, and Grupo de Investigación en Automatización, Robótica y Sistemas Inteligentes, GI-ARSI, for the support to develop this work.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Mora-Aguilar, J., Carvajal, C.P., Sánchez, J.S., Andaluz, V.H. (2018). Cooperative Control of Sliding Mode for Mobile Manipulators. In: Ge, S., et al. Social Robotics. ICSR 2018. Lecture Notes in Computer Science(), vol 11357. Springer, Cham. https://doi.org/10.1007/978-3-030-05204-1_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-05204-1_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05203-4
Online ISBN: 978-3-030-05204-1
eBook Packages: Computer ScienceComputer Science (R0)