Abstract
The collection of solid waste is a very important problem for most of the modern cities of the world. The solution to this problem requires to apply optimization techniques capable of design the best path routes that guarantee to collect all the waste minimizing the cost. Several computation techniques could be applied to solve this problem and one of the most suitable could be swarm optimization such as ant colony optimization. In this paper, we propose a methodology for searching a set of collection paths of solid waste that optimize the distance of a tour in Ciudad Universitaria (UNAM). This methodology uses a vehicle routing problem (VRP) approach combined with Max-Min Ant System algorithm. To assess the accuracy of the proposal, we select the scholar circuit in the area of Ciudad Universitaria. The results shown a shortest distance travelled and better distribution than the empiric route used actually for the cleaning service.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bonomo, F., Durán, G., Larumbe, F., Marenco, J.: A method for optimiz-ing waste collection using mathematical programming: a Buenos Aires case study. Waste Manag. Res. 30(3), 311–324 (2012)
Dorigo, M., Birattari, M., Stützle, T.: Ant colony optimization-artificial ants as a computational intelligence technique. IEEE Comput. Intell. Mag. 1, 28–39 (2006)
Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)
Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: an autocatalytic optimizing process. Université Libre de Bruxelles (1991)
Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis, Dip. Electtronica e Informazion, Politecnico di Milano Italy (1992)
Filipiak, K.A., Abdel-Malek, L., Hsieh, H.-N., Meegoda, J.N.: Optimization of municipal solid waste collection system: case study. Pract. Period. Hazard. Toxic Radioact. Waste Manag. 13(3), 210–216 (2009)
Hemmelmayr, V., et al.: A heuristic solution method for node routing based solid waste collection problems. J. Heuristics 19(2), 129–156 (2013)
Hornig, E.S., Fuentealba, N.R.: Modelo ACO para la recolección de residuos por contenedores. Rev. Chil. Ing. 17(2), 236–243 (2009)
Ismail, Z., Loh, S.: Ant colony optimization for solving solid waste collection scheduling problems. J. Math. Stat. 5(3), 199 (2009)
Karadimas, N.V., et al.: Optimal solid waste collection routes identified by the ant colony system algorithm. Waste Manag. Res. 25(2), 139–147 (2007)
Kulcar, T.: Optimizing solid waste collection in Brussels. Eur. J. Oper. Res. 90(1), 71–77 (1996)
Mansini, R., et al.: A linear programming model for the separate refuse collection service. Comput. Oper. Res. 25(7), 659–673 (1998)
Mourao, M., Almeida, M.T.: Lower-bounding and heuristic methods for a refuse collection vehicle routing problem. Eur. J. Oper. Res. 121(2), 420–434 (2000)
Ogwueleka, T.C.: Route optimization for solid waste collection: Onitsha (Nigeria) case study. J. Appl. Sci. Environ. Manag. 13(2), 37–40 (2009)
Stützle, T., Hoos, H.H.: Improving the ant system: a detailed report on the MAX– MIN ant system. Technical report AIDA–96–12, FG Intellektik, FB Informatik, TU Darmstadt, Germany, August 1996 (1996)
Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimization. Artif. Life 5(2), 137–172 (1999)
Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manag. Sci. 6(1), 80–91 (1959)
Acknowledgments
The authors would like to thank Dirección General de Obras y Conservación, UNAM. This work was supported by the SECITI under Project SECITI/064/2016.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Rodriguez-Vazquez, K., Garro, B.A., Mancera, E. (2018). Solid Waste Collection in Ciudad Universitaria-UNAM Using a VRP Approach and Max-Min Ant System Algorithm. In: Batyrshin, I., Martínez-Villaseñor, M., Ponce Espinosa, H. (eds) Advances in Soft Computing. MICAI 2018. Lecture Notes in Computer Science(), vol 11288. Springer, Cham. https://doi.org/10.1007/978-3-030-04491-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-04491-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04490-9
Online ISBN: 978-3-030-04491-6
eBook Packages: Computer ScienceComputer Science (R0)