Abstract
Opinion mining of social networking sites like Facebook and Twitter plays an important role in exploring valuable online user-generated contents. In contrast to sentence-level sentiment classification, the aspect-based analysis which can infer polarities towards various aspects in one sentence could obtain more in-depth insight. However, in traditional machine learning approaches, training such a fine-grained model often needs certain manual feature engineering. In this article, we proposed a deep learning model for aspect-level sentiment analysis and applied it to nuclear energy related tweets for understanding public opinions towards nuclear energy. We also built a new dataset for this task and the evaluation results showed that our attentive neural network could obtain insightful inference in rather complex expression forms and achieve state-of-the-art performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M.: Predicting elections with Twitter: what 140 characters reveal about political sentiment. Icwsm 10(1), 178–185 (2010)
Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web, pp. 851–860. ACM (2010)
Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–167 (2012)
Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., Manandhar, S.: SemEval-2014 task 4: aspect based sentiment analysis. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 27–35 (2014)
Mohammad, S.M., Kiritchenko, S., Zhu, X.: NRC-Canada: building the state-of-the-art in sentiment analysis of tweets. arXiv preprint arXiv:1308.6242 (2013)
Thet, T.T., Na, J.C., Khoo, C.S.: Aspect-based sentiment analysis of movie reviews on discussion boards. J. Inf. Sci. 36(6), 823–848 (2010)
Dzmitry, B., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Rocktäschel, T., Grefenstette, E., Hermann, K.M., Kočiský, T., Blunsom, P.: Reasoning about entailment with neural attention. arXiv preprint arXiv:1509.06664 (2015)
Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025 (2015)
Sukhbaatar, S., Weston, J., Fergus, R.: End-to-end memory networks. In: Advances in Neural Information Processing Systems, pp. 2440–2448 (2015)
Wang, Y., Huang, M., Zhao, L.: Attention-based LSTM for aspect-level sentiment classification. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 606–615 (2016)
Kim, D.S., Kim, J.W.: Public opinion sensing and trend analysis on social media: a study on nuclear power on Twitter. Int. J. Multimed. Ubiquitous Eng. 9(11), 373–384 (2014)
Kumar, A., et al.: Ask me anything: dynamic memory networks for natural language processing. In: International Conference on Machine Learning, pp. 1378–1387 (2016)
Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)
Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, Z., Na, JC. (2018). Aspect-Based Sentiment Analysis of Nuclear Energy Tweets with Attentive Deep Neural Network. In: Dobreva, M., Hinze, A., Žumer, M. (eds) Maturity and Innovation in Digital Libraries. ICADL 2018. Lecture Notes in Computer Science(), vol 11279. Springer, Cham. https://doi.org/10.1007/978-3-030-04257-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-04257-8_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04256-1
Online ISBN: 978-3-030-04257-8
eBook Packages: Computer ScienceComputer Science (R0)