Efficient Direct Structured Subspace Clustering | SpringerLink
Skip to main content

Efficient Direct Structured Subspace Clustering

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11304))

Included in the following conference series:

  • 2334 Accesses

Abstract

Subspace clustering splits data instances that are drawn from special low-dimensional subspaces via utilizing similarities between them. Traditional methods contain two steps: (1) learning the affinity matrix and (2) clustering on the affinity matrix. Although these two steps can alternatively contribute to each other, there exist heavy dependencies between the performance and the initial quality of affinity matrix. In this paper, we propose an efficient direct structured subspace clustering approach to reduce the quality effects of the affinity matrix on performances. We first analyze the connection between the affinity and partition matrices, and then fuse the computation of affinity and partition matrices. This fusion allows better preserving the subspace structures which help strengthen connections between data points in the same subspaces. In addition, we introduce an algorithm to optimize our proposed method. We conduct comparative experiments on multiple data sets with state-of-the-art methods. Our method achieves better or comparable performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhao, C., Zhang, J., Ma, S., Fan, X., Zhang, Y., Gao, W.: Reducing image compression artifacts by structural sparse representation and quantization constraint prior. IEEE Trans. Circuits Syst. Video Technol. 27(10), 2057–2071 (2017)

    Article  Google Scholar 

  2. Lai, T., Wang, H., Yan, Y., Chin, T., Zhao, W.: Motion segmentation via a sparsity constraint. IEEE Trans. Intell. Transp. Syst. 18(4), 973–983 (2017)

    Article  Google Scholar 

  3. Li, C., You, C., Vidal, R.: Structured sparse subspace clustering: a joint affinity learning and subspace clustering framework. IEEE Trans. Image Process. 26(6), 2988–3001 (2017)

    Article  MathSciNet  Google Scholar 

  4. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory and applications. IEEE Trans. Patt. Anal. Mach. Intell. 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  5. Ma, Y., Shang, C., Yang, F., Huang, D.: Latent subspace clustering based on deep neural networks. In: 6th International Symposium on Advanced Control of Industrial Processes, pp. 502–507. IEEE Press, Hiroshima (2014)

    Google Scholar 

  6. Tian, F., Gao, B., Cui, Q., Chen, E., Liu, T.: Learning deep representations for graph clustering. In: 28th AAAI Conference on Artificial Intelligence, pp. 1293–1299. AAAI Press, Québec (2014)

    Google Scholar 

  7. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: 33rd International Conference on Machine Learning, New York, pp. 478–487 (2016)

    Google Scholar 

  8. Peng, X., Xiao, S., Feng, J., Yau, W., Yi, Z.: Deep subspace clustering with sparsity prior. In: 25th International Joint Conference on Artificial Intelligence, New York, pp. 1925–1931 (2016)

    Google Scholar 

  9. Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local structure preservation. In: 26th International Joint Conference on Artificial Intelligence, Melbourne, pp. 1753–1759 (2017)

    Google Scholar 

  10. Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: 22nd IEEE Conference on Computer Vision and Pattern Recognition, pp. 2790–2797. IEEE Press, Florida (2009)

    Google Scholar 

  11. Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation. In: 27th International Conference on Machine Learning, Haifa, pp. 663–670 (2010)

    Google Scholar 

  12. Liu, G., Yan, S.: Latent low-rank representation for subspace segmentation and feature extraction. In: 13th International Conference on Computer Vision, pp. 1615–1122. IEEE Press, Barcelona (2011)

    Google Scholar 

  13. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Patt. Anal. Mach. Intell. 35(1), 171–184 (2013)

    Article  Google Scholar 

  14. Li, C., Vidal, R.: Structured sparse subspace clustering: a unified optimization framework. In: 28th IEEE Conference on Computer Vision and Pattern Recognition, pp. 277–286. IEEE Press, Boston (2015)

    Google Scholar 

  15. Vidal, R., Favaro, P.: Low rank subspace clustering (LRSC). Patt. Recogn. Lett. 43(1), 47–61 (2014)

    Article  Google Scholar 

  16. Feng, J., Lin, Z., Xu, H., Yan, S.: Robust subspace segmentation with block-diagonal prior. In: 27th IEEE Conference on Computer Vision and Pattern Recognition, pp. 3818–3825. IEEE Press, Ohio (2014)

    Google Scholar 

  17. Lu, C.-Y., Min, H., Zhao, Z.-Q., Zhu, L., Huang, D.-S., Yan, S.: Robust and efficient subspace segmentation via least squares regression. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 347–360. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33786-4_26

    Chapter  Google Scholar 

  18. Lu, C., Lin, Z., Yan, S.: Correlation adaptive subspace segmentation by trace lasso. In: 14th International Conference on Computer Vision, pp. 1345–1352. IEEE Press, Sydney (2013)

    Google Scholar 

  19. Park, D., Caramanis, C, Sanghavi, S.: Greedy subspace clustering. In: 28th Conference on Neural Information Processing Systems, Montréal, pp. 2753–2761 (2014)

    Google Scholar 

  20. Yang, Y., Feng, J., Jojic, N., Yang, J., Huang, T.S.: \(\ell ^{0}\)-sparse subspace clustering. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 731–747. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_45

    Chapter  Google Scholar 

  21. Grave, E., Obozinski, G., Bach, F.: Trace lasso: a trace norm regularization for correlated designs. In: 25th Conference on Neural Information Processing Systems, Granada, pp. 2187–2195 (2011)

    Google Scholar 

  22. Patel, V., Vidal, R.: Kernel sparse subspace clustering. In: 22nd International Conference on Pattern Recognition, pp. 2849–2853. IEEE Press, Paris (2014)

    Google Scholar 

  23. De la Torre, F., Kanade, T.: Discriminative cluster analysis. In: 23rd International Conference on Machine Learning, Pittsburgh, pp. 241–248 (2006)

    Google Scholar 

  24. You, C., Robinson, D., Vidal, R.: Scalable sparse subspace clustering by orthogonal matching pursuit. In: 29th IEEE Conference on Computer Vision and Pattern Recognition, pp. 3918–3927. IEEE Press, Las Vegas (2016)

    Google Scholar 

  25. Ji, P., Salzmann, M., Li, H.: Efficient dense subspace clustering. In: IEEE Winter Conference on Application of Computer Vision, pp. 461–468. IEEE Press, Steamboat Springs (2014)

    Google Scholar 

  26. Ji, P., Zhang, T., Li, H., Salzmann, M., Reid, I.: Deep subspace clustering networks. In: 32nd Conference on Neural Information Processing Systems, Montréal, pp. 24–33 (2017)

    Google Scholar 

  27. Ren, Y., Domeniconi, C., Zhang, G., Yu, G.: A weighted adaptive mean shift clustering algorithm. In: SIAM International Conference on Data Mining, pp. 794–802. SIAM Press, Pennsylvania (2014)

    Chapter  Google Scholar 

  28. Friedman, J.H., Meulman, J.J.: Clustering objects on subsets of attributes. J. Royal Stat. Soc. Ser. B (Stat. Methodol.) 66, 815–849 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The work described in this paper was partially supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China [Project No. CityU 11300715), and a grant from City University of Hong Kong [Project No. 7004884].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hau-San Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, Wm., Li, R., Qian, S., Wu, S., Wong, HS. (2018). Efficient Direct Structured Subspace Clustering. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11304. Springer, Cham. https://doi.org/10.1007/978-3-030-04212-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04212-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04211-0

  • Online ISBN: 978-3-030-04212-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics