Tracking Dynamics in Concurrent Digital Twins | SpringerLink
Skip to main content

Tracking Dynamics in Concurrent Digital Twins

  • Conference paper
  • First Online:
Complex Systems Design & Management (CSD&M 2018)

Abstract

The availability of machine-generated data for the management of complex systems enables run-time technologies for diagnosis, predictive maintenance, process control, etc. that find their apex in digital twins. Such model-based replica of cyber-physical assets represent system elements and their behavior within their environment, which is often dynamic. These dynamics of a system’s environment can render the underlying model unfit w.r.t. the changing reality and thus cripple the whole approach. We provide the means to detect such a transgression of the operational space of digital twins and similar technologies using a novel combination of probability-of-findings calculations with established process control methods and localize necessary updates to ensure efficient model maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 26311
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 32889
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Monash, C.: Examples and Definition of Machine-Generated Data. Monash Research Publication (2010). www.dbms2.com/2010/12/30/examples-and-definition-of-machine-generated-data. Accessed Apr 2018

  2. Laney, D., Jain, A.: 100 Data and Analytics Predictions Through 2021. Gartner Report G00332376 (2017)

    Google Scholar 

  3. Gartner Press Release: Gartner Identifies the Top 10 Strategic Technology Trends for 2017. Gartner (2016). www.gartner.com/newsroom/id/3482617. Accessed Apr 2018

  4. Grieves, M., Vickers, J.: Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In: Transdisciplinary Perspectives on Complex Systems, pp. 85–114. Springer International Publishing (2016)

    Google Scholar 

  5. Oracle: Digital twins for IoT applications. Oracle White Paper (2017). www.oracle.com/us/solutions/internetofthings/digital-twins-for-iot-apps-wp-3491953.pdf. Accessed Apr 2018

  6. Pearl, J.: Causality. Cambridge University Press, New York (2009)

    Book  Google Scholar 

  7. Borth, M.: Probabilistic system summaries for behavior architecting. In: Proceedings of the Complex Systems Design and Management 2014 CEUR Workshop, pp. 71–82 (2014)

    Google Scholar 

  8. Christensen, J.J., Andersson, C., Gutt, S.: Remote condition monitoring of Vestas turbines. In: Proceedings European Wind Energy Conference, pp. 1–10 (2009)

    Google Scholar 

  9. Gupta, S., Starr, M.: Production and Operations Management Systems. CRC Press, Boca Raton (2014)

    Google Scholar 

  10. Schwab, K.: The Fourth Industrial Revolution. Portfolio Penguin, London (2017)

    Google Scholar 

  11. Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, New York (2001)

    Book  Google Scholar 

  12. Jensen, F.V., Aldenryd, S.H., Jensen, K.B.: Sensitivity analysis in Bayesian networks. In: Carbonell, J.G., et al. (eds.) Symbolic and Quantitative Approaches to Reasoning and Uncertainty. Springer Lecture Notes in CS, vol. 946, pp. 243–250 (1995)

    Google Scholar 

  13. Koller, D., Pfeffer, A.: Object-oriented Bayesian networks. In: Geiger, D., Shenoy, P.P. (eds.) Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence (UAI 1997), pp. 302–313. Morgan Kaufmann Publishers Inc. (1997)

    Google Scholar 

  14. Laskey, K.B., Mahoney, S.M.: Network fragments: representing knowledge for constructing probabilistic models. In: Geiger, D., Shenoy, P.P. (eds.) Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence (UAI 1997), pp. 334–341. Morgan Kaufmann Publishers Inc. (1997)

    Google Scholar 

  15. Borth, M., von Hasseln, H.: Systematic generation of Bayesian networks from systems specifications. In: Musen, M.A., Neumann, B., Studer, R. (eds.) Intelligent Information Processing, pp. 155–166. Kluver (2002)

    Google Scholar 

  16. Western Electric Rules: From Wikipedia. en.wikipedia.org/wiki/Western_Electric_rules. Accessed May 2018

  17. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, H.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46, 44 (2014)

    Article  Google Scholar 

  18. Pimentel, M.A., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty detection. Signal Process. 215–249 (2014)

    Article  Google Scholar 

  19. Borth, M., van Gerwen, E.: Data-driven aspects of engineering. In: IEEE SoSE 2018, Paris (2018, accepted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emile van Gerwen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borth, M., van Gerwen, E. (2019). Tracking Dynamics in Concurrent Digital Twins. In: Bonjour, E., Krob, D., Palladino, L., Stephan, F. (eds) Complex Systems Design & Management. CSD&M 2018. Springer, Cham. https://doi.org/10.1007/978-3-030-04209-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04209-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04208-0

  • Online ISBN: 978-3-030-04209-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics