HISBmodel: A Rumor Diffusion Model Based on Human Individual and Social Behaviors in Online Social Networks | SpringerLink
Skip to main content

HISBmodel: A Rumor Diffusion Model Based on Human Individual and Social Behaviors in Online Social Networks

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11302))

Included in the following conference series:

  • 2684 Accesses

Abstract

This paper attempts to address the rumor propagation problem in online social networks (OSNs) and proposes a novel rumor diffusion model, named the HISBmodel. Its originality lies in the consideration of various human factors such as the human social and individual behaviors and the individuals’ opinions. Moreover, we present new metrics that allow accurate assessment of the propagation of rumors. Based on this model, we present a strategy to minimize the influence of the rumor. Instead of blocking nodes, we propose to launch a truth campaign to raise the awareness to prevent the influence of a rumor. This problem is formulated from the perspective of a network inference using the survival theory. The experimental results illustrate that the HISBmodel depicts the evolution of rumor propagation more realistic than classical models. Moreover, Our model highlights the impact of human factors accurately as proven in the studies of the literature. Finally, these experiments showed the outstanding performance of our strategy to minimize the influence of the rumor by selecting precisely the candidate nodes to diminish the influence of the rumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://weibo.com/.

  2. 2.

    https://en.wikipedia.org/wiki/CharlieHebdoshooting.

  3. 3.

    https://en.wikipedia.org/wiki/Fergusonunrest.

References

  1. Afassinou, K.: Analysis of the impact of education rate on the rumor spreading mechanism. Phys. A Stat. Mech. Appl. 414, 43–52 (2014)

    Article  MathSciNet  Google Scholar 

  2. Borodin, A., Filmus, Y., Oren, J.: Threshold models for competitive influence in social networks. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 539–550. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17572-5_48

    Chapter  Google Scholar 

  3. Bredereck, R., Elkind, E.: Manipulating opinion diffusion in social networks. In: Proceedings of the 26th IJCAI (2017)

    Google Scholar 

  4. Budak, C., Abbadi, A.E.: Limiting the spread of misinformation in social networks. Distribution, pp. 665–674 (2011)

    Google Scholar 

  5. Daley, D., Kendall, D.: Epidemics and rumours. Nature 204(4963), 1118 (1964)

    Article  Google Scholar 

  6. DiFonzo, N., Bordia, P., Rosnow, R.L.: Reining in rumors. Organ. Dyn. 23(1), 47–62 (1994)

    Article  Google Scholar 

  7. Fan, L., Lu, Z., Wu, W., Bhavani, T., Ma, H., Bi, Y.: Least cost rumor blocking in social networks. In: IEEE 33rd International Conference on Distributor Computer Systems (2013)

    Google Scholar 

  8. Galam, S.: Modelling rumors: the no plane pentagon french hoax case. Phys. A Stat. Mech. Appl. 320(7603), 571–580 (2003)

    Article  Google Scholar 

  9. Gomez-Rodriguez, M., Leskovec, J.: Modeling information propagation with survival theory. In: Proceedings of the 30th ICML (ICML-13), pp. 666–674 (2013)

    Google Scholar 

  10. Han, S., Zhuang, F., He, Q., Shi, Z., Ao, X.: Energy model for rumor propagation on social networks. Phys. A Stat. Mech. Appl. 394, 99–109 (2014)

    Article  Google Scholar 

  11. He, X., Song, G., Chen, W., Jiang, Q.: Influence blocking maximization in social networks under the competitive linear threshold model. Education p. Technical report CoRR abs/1110.4723 (2011)

    Google Scholar 

  12. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: KDD, p. 137 (2003)

    Google Scholar 

  13. Kimura, M., Saito, K., Motoda, H.: Minimizing the spread of contamination by blocking links in a network. In: AAAI, pp. 1175–1180 (2008)

    Google Scholar 

  14. Leskovec, J., Krevl, A.: SNAP datasets: stanford large network dataset collection, June 2014

    Google Scholar 

  15. Ma, J., Li, D., Tian, Z.: Rumor spreading in online social networks by considering the bipolar social reinforcement. Phys. A: Stat. Mech. Appl. 447, 108–115 (2016)

    Article  MathSciNet  Google Scholar 

  16. Marion, J.B., S.T.T.: Classical dynamics of particles and systems. Thomson (2003)

    Google Scholar 

  17. Meshi, D., Morawetz, C., Heekeren, H.R.: Nucleus accumbens response to gains in reputation for the self relative to gains for others predicts social media use. Front. Hum. Neurosci. 7, 439 (2013)

    Article  Google Scholar 

  18. Wang, B., Chen, G., Fu, L., Song, L., Wang, X.: Drimux: dynamic rumor influence minimization with user experience in social networks. IEEE Trans. Knowl. Data Eng. 29(10), 2168–2181 (2017)

    Article  Google Scholar 

  19. Wang, H., Deng, L., Xie, F., Xu, H., Han, J.: A new rumor propagation model on SNS structure. In: Proceedings of IEEE International Conference Granular Computing GrC 2012 (2012)

    Google Scholar 

  20. Wang, J., Wang, Y.Q., Li, M.: Rumor spreading considering the herd mentality mechanism. In: Control Conference, 2017 36th Chinese, pp. 1480–1485. IEEE (2017)

    Google Scholar 

  21. Wang, Y.Q., Yang, X.Y., Han, Y.L.: Rumor spreading model with trust mechanism in complex social networks. Commun. Theor. Phys. 59(4), 510 (2013)

    Article  Google Scholar 

  22. Xia, L.L., Jiang, G.P., Song, B., Song, Y.R.: Rumor spreading model considering hesitating mechanism in complex social networks. Phys. A Stat. Mech. Appl. 437, 295–303 (2015)

    Article  MathSciNet  Google Scholar 

  23. Yang, J., Leskovec, J.: Patterns of temporal variation in online media. Time 468, 177–186 (2011)

    Google Scholar 

  24. Zhao, L., Cui, H., Qiu, X., Wang, X., Wang, J.: SIR rumor spreading model in the new media age. Phys. A Stat. Mech. Appl. 392(4), 995–1003 (2013)

    Article  MathSciNet  Google Scholar 

  25. Zhao, L., Wang, J., Chen, Y., Wang, Q., Cheng, J., Cui, H.: SIHR rumor spreading model in social networks. Phys. A Stat. Mech. Appl. 391(7), 2444–2453 (2012)

    Article  Google Scholar 

  26. Zhao, L., Wang, Q., Cheng, J., Chen, Y., Wang, J., Huang, W.: Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal. Phys. A Stat. Mech. Appl. 390(13), 2619–2625 (2011)

    Article  Google Scholar 

  27. Zubiaga, A., Hoi, G.W.S., Liakata, M., Procter, R.: Pheme dataset of rumours and non-rumours. (2016)

    Google Scholar 

Download references

Acknowledgment

The Research was supported in part by National Basic Research Program of China (973 Program, No.2013CB329605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hosni, A.I.E., Li, K., Ahmed, S. (2018). HISBmodel: A Rumor Diffusion Model Based on Human Individual and Social Behaviors in Online Social Networks. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11302. Springer, Cham. https://doi.org/10.1007/978-3-030-04179-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04179-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04178-6

  • Online ISBN: 978-3-030-04179-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics