Hyper-heuristic Based Local Search for Combinatorial Optimisation Problems | SpringerLink
Skip to main content

Hyper-heuristic Based Local Search for Combinatorial Optimisation Problems

  • Conference paper
  • First Online:
AI 2018: Advances in Artificial Intelligence (AI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11320))

Included in the following conference series:

Abstract

Combinatorial optimisation is often needed for solving real-world problems, which are often NP-hard so exact methods are not suitable. Instead local search methods are often effective to find near-optimal solutions quickly. However, it is difficult to determine which local search with what parameter setting should be optimal for a given problem. In this study two complex combinatorial optimisation are used, Multi-capacity Bin Packing Problems (MCBPP) and Google Machine Reassignment Problem (GMRP). Our experiments show that no single local search method could consistently achieve the best. They are sensitive to problem search space and parameters. Therefore we propose a hyper heuristic based method, which automatically selects the most appropriate local search during the search and tune the parameters accordingly. The results show that our proposed hyper-heuristic approach is effective and can achieve the overall best on multiple instances of both MCBPP and GMRP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burke, E.K., Bykov, Y.: A late acceptance strategy in hill-climbing for exam timetabling problems. In: PATAT 2008 Conference, Montreal, Canada (2008)

    Google Scholar 

  2. Caprara, A., Toth, P.: Lower bounds and algorithms for the 2-dimensional vector packing problem. Discret. Appl. Math. 111(3), 231–262 (2001)

    Article  MathSciNet  Google Scholar 

  3. Dueck, G.: New optimization heuristics: the great deluge algorithm and the record-to-record travel. J. Comput. Phys. 104(1), 86–92 (1993)

    Article  MathSciNet  Google Scholar 

  4. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  5. Lourenço, H.R., Martin, O., Stützle, T.: A beginners introduction to iterated local search. In: Proceedings of MIC, pp. 1–6 (2001)

    Google Scholar 

  6. Monaci, M., Toth, P.: A set-covering-based heuristic approach for bin-packing problems. INFORMS J. Comput. 18(1), 71–85 (2006)

    Article  MathSciNet  Google Scholar 

  7. ROADEF: ROADEF/EURO challenge 2012: machine reassignment. http://challenge.roadef.org/2012/en/

  8. Sabar, N.R., Song, A.: Grammatical evolution enhancing simulated annealing for the load balancing problem in cloud computing. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference, pp. 997–1003. ACM (2016)

    Google Scholar 

  9. Sabar, N.R., Song, A., Zhang, M.: A variable local search based memetic algorithm for the load balancing problem in cloud computing. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 267–282. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31204-0_18

    Chapter  Google Scholar 

  10. Spieksma, F.C.R.: A branch-and-bound algorithm for the two-dimensional vector packing problem. Comput. Oper. Res. 21(1), 19–25 (1994)

    Article  Google Scholar 

  11. Turky, A., Sabar, N.R., Sattar, A., Song, A.: Parallel late acceptance hill-climbing algorithm for the Google machine reassignment problem. In: Kang, B.H., Bai, Q. (eds.) AI 2016. LNCS (LNAI), vol. 9992, pp. 163–174. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50127-7_13

    Chapter  Google Scholar 

  12. Turky, A., Sabar, N.R., Sattar, A., Song, A.: Evolutionary learning based iterated local search for Google machine reassignment problems. In: Shi, Y., et al. (eds.) SEAL 2017. LNCS, vol. 10593, pp. 409–421. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68759-9_34

    Chapter  Google Scholar 

  13. Turky, A., Sabar, N.R., Sattar, A., Song, A.: Multi-neighbourhood Great Deluge for Google machine reassignment problem. In: Shi, Y., et al. (eds.) SEAL 2017. LNCS, vol. 10593, pp. 706–715. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68759-9_57

    Chapter  Google Scholar 

  14. Turky, A., Sabar, N.R., Song, A.: An evolutionary simulating annealing algorithm for Google machine reassignment problem. In: Leu, G., Singh, H.K., Elsayed, S. (eds.) Intelligent and Evolutionary Systems. PALO, vol. 8, pp. 431–442. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49049-6_31

    Chapter  Google Scholar 

  15. Turky, A., Sabar, N.R., Song, A.: Cooperative evolutionary heterogeneous simulated annealing algorithm for Google machine reassignment problem. Genet. Program. Evolvable Mach. 19(1–2), 183–210 (2018)

    Article  Google Scholar 

  16. Turky, A., Sabar, N.R., Song, A.: Neighbourhood analysis: a case study on Google machine reassignment problem. In: Wagner, M., Li, X., Hendtlass, T. (eds.) ACALCI 2017. LNCS (LNAI), vol. 10142, pp. 228–237. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51691-2_20

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayad Turky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Turky, A., Sabar, N.R., Dunstall, S., Song, A. (2018). Hyper-heuristic Based Local Search for Combinatorial Optimisation Problems. In: Mitrovic, T., Xue, B., Li, X. (eds) AI 2018: Advances in Artificial Intelligence. AI 2018. Lecture Notes in Computer Science(), vol 11320. Springer, Cham. https://doi.org/10.1007/978-3-030-03991-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03991-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03990-5

  • Online ISBN: 978-3-030-03991-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics