From Semantically Abstracted Traces to Process Mining and Process Model Comparison | SpringerLink
Skip to main content

From Semantically Abstracted Traces to Process Mining and Process Model Comparison

  • Conference paper
  • First Online:
AI*IA 2018 – Advances in Artificial Intelligence (AI*IA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11298))

Abstract

Process model comparison can be exploited to assess the quality of organizational procedures, to identify non-conformances with respect to given standards, and to highlight critical situations. Sometimes, however, it is difficult to make sense of large and complex process models, while a more abstract view of the process would be sufficient for the comparison task. In this paper, we show how process traces, abstracted on the basis of domain knowledge, can be provided as an input to process mining, and how abstract models (i.e., models mined from abstracted traces) can then be compared and ranked, by adopting a similarity metric able to take into account penalties collected during the abstraction phase. The overall framework has been tested in the field of stroke management, where we were able to rank abstract process models more similarly to the ordering provided by a domain expert, with respect to what could be obtained when working on non-abstract ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baier, T., Di Ciccio, C., Mendling, J., Weske, M.: Matching events and activities by integrating behavioral aspects and label analysis. Softw. Syst. Model. 17(2), 573–598 (2018)

    Article  Google Scholar 

  2. Bunke, H.: On a relation between graph edit distance and maximum common subgraph. Pattern Recognit. Lett. 18(8), 689–694 (1997)

    Article  Google Scholar 

  3. Calvanese, D., Kalayci, T.E., Montali, M., Santoso, A.: The onprom toolchain for extracting business process logs using ontology-based data access. In: Clarisó, R., (eds.) Proceedings of the BPM Demo Track and BPM Dissertation Award co-located with 15th International Conference on Business Process Modeling (BPM 2017), Barcelona, Spain, 13 September 2017, CEUR Workshop Proceedings, vol. 1920. CEUR-WS.org (2017)

    Google Scholar 

  4. Casati, F., Shan, M.-C.: Semantic analysis of business process executions. In: Jensen, C.S., et al. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 287–296. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45876-X_19

    Chapter  Google Scholar 

  5. de Medeiros, A.K.A., et al.: An outlook on semantic business process mining and monitoring. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2007 Part II. LNCS, vol. 4806, pp. 1244–1255. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76890-6_52

    Chapter  Google Scholar 

  6. Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph matching algorithms for business process model similarity search. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03848-8_5

    Chapter  Google Scholar 

  7. Grando, M.A., Schonenberg, M.H., van der Aalst, W.M.P.: Semantic process mining for the verification of medical recommendations. In: Traver, V., Fred, A.L.N., Filipe, J., Gamboa, H. (eds.) HEALTHINF 2011 - Proceedings of the International Conference on Health Informatics, Rome, Italy, 26–29 January, 2011, pp. 5–16. SciTePress (2011)

    Google Scholar 

  8. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0_24

    Chapter  Google Scholar 

  9. LaRosa, M., Dumas, M., Uba, R., Dijkman, R.: Business process model merging: an approach to business process consolidation. ACM Trans. Softw. Eng. Methodol. 22(2), 11 (2013)

    Google Scholar 

  10. De Maio, M.N., Salatino, M., Aliverti, E.: Mastering JBoss Drools 6 for Developers. Packt Publishing, Birmingham (2016)

    Google Scholar 

  11. Minor, M., Tartakovski, A., Schmalen, D., Bergmann, R.: Agile workflow technology and case-based change reuse for long-term processes. Int. J. Intell. Inf. Technol. 4(1), 80–98 (2008)

    Article  Google Scholar 

  12. Montani, S., Leonardi, G., Quaglini, S., Cavallini, A., Micieli, G.: A knowledge-intensive approach to process similarity calculation. Expert Syst. Appl. 42(9), 4207–4215 (2015)

    Article  Google Scholar 

  13. Palmer, M., Wu, Z.: Verb semantics for english-chinese translation. Mach. Transl. 10, 59–92 (1995)

    Article  Google Scholar 

  14. Pedrinaci, C., Domingue, J., Brelage, C., van Lessen, T., Karastoyanova, D., Leymann, F.: Semantic business process management: scaling up the management of business processes. In: Proceedings of the 2th IEEE International Conference on Semantic Computing (ICSC 2008), 4–7 August 2008, Santa Clara, California, USA, pp. 546–553. IEEE Computer Society (2008)

    Google Scholar 

  15. van der Aalst, W.: Process Mining: Data Science in Action. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    Book  Google Scholar 

  16. van Dongen, B., Alves De Medeiros, A., Verbeek, H., Weijters, A., van der Aalst, W.: The proM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Berlin (2005). https://doi.org/10.1007/11494744_25

    Chapter  Google Scholar 

  17. Weijters, A., van der Aalst, W., Alves de Medeiros, A.: Process Mining with the Heuristic Miner Algorithm, WP 166. Eindhoven University of Technology, Eindhoven (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Montani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leonardi, G., Striani, M., Quaglini, S., Cavallini, A., Montani, S. (2018). From Semantically Abstracted Traces to Process Mining and Process Model Comparison. In: Ghidini, C., Magnini, B., Passerini, A., Traverso, P. (eds) AI*IA 2018 – Advances in Artificial Intelligence. AI*IA 2018. Lecture Notes in Computer Science(), vol 11298. Springer, Cham. https://doi.org/10.1007/978-3-030-03840-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03840-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03839-7

  • Online ISBN: 978-3-030-03840-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics