Abstract
Process model comparison can be exploited to assess the quality of organizational procedures, to identify non-conformances with respect to given standards, and to highlight critical situations. Sometimes, however, it is difficult to make sense of large and complex process models, while a more abstract view of the process would be sufficient for the comparison task. In this paper, we show how process traces, abstracted on the basis of domain knowledge, can be provided as an input to process mining, and how abstract models (i.e., models mined from abstracted traces) can then be compared and ranked, by adopting a similarity metric able to take into account penalties collected during the abstraction phase. The overall framework has been tested in the field of stroke management, where we were able to rank abstract process models more similarly to the ordering provided by a domain expert, with respect to what could be obtained when working on non-abstract ones.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baier, T., Di Ciccio, C., Mendling, J., Weske, M.: Matching events and activities by integrating behavioral aspects and label analysis. Softw. Syst. Model. 17(2), 573–598 (2018)
Bunke, H.: On a relation between graph edit distance and maximum common subgraph. Pattern Recognit. Lett. 18(8), 689–694 (1997)
Calvanese, D., Kalayci, T.E., Montali, M., Santoso, A.: The onprom toolchain for extracting business process logs using ontology-based data access. In: Clarisó, R., (eds.) Proceedings of the BPM Demo Track and BPM Dissertation Award co-located with 15th International Conference on Business Process Modeling (BPM 2017), Barcelona, Spain, 13 September 2017, CEUR Workshop Proceedings, vol. 1920. CEUR-WS.org (2017)
Casati, F., Shan, M.-C.: Semantic analysis of business process executions. In: Jensen, C.S., et al. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 287–296. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45876-X_19
de Medeiros, A.K.A., et al.: An outlook on semantic business process mining and monitoring. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2007 Part II. LNCS, vol. 4806, pp. 1244–1255. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76890-6_52
Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph matching algorithms for business process model similarity search. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03848-8_5
Grando, M.A., Schonenberg, M.H., van der Aalst, W.M.P.: Semantic process mining for the verification of medical recommendations. In: Traver, V., Fred, A.L.N., Filipe, J., Gamboa, H. (eds.) HEALTHINF 2011 - Proceedings of the International Conference on Health Informatics, Rome, Italy, 26–29 January, 2011, pp. 5–16. SciTePress (2011)
Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0_24
LaRosa, M., Dumas, M., Uba, R., Dijkman, R.: Business process model merging: an approach to business process consolidation. ACM Trans. Softw. Eng. Methodol. 22(2), 11 (2013)
De Maio, M.N., Salatino, M., Aliverti, E.: Mastering JBoss Drools 6 for Developers. Packt Publishing, Birmingham (2016)
Minor, M., Tartakovski, A., Schmalen, D., Bergmann, R.: Agile workflow technology and case-based change reuse for long-term processes. Int. J. Intell. Inf. Technol. 4(1), 80–98 (2008)
Montani, S., Leonardi, G., Quaglini, S., Cavallini, A., Micieli, G.: A knowledge-intensive approach to process similarity calculation. Expert Syst. Appl. 42(9), 4207–4215 (2015)
Palmer, M., Wu, Z.: Verb semantics for english-chinese translation. Mach. Transl. 10, 59–92 (1995)
Pedrinaci, C., Domingue, J., Brelage, C., van Lessen, T., Karastoyanova, D., Leymann, F.: Semantic business process management: scaling up the management of business processes. In: Proceedings of the 2th IEEE International Conference on Semantic Computing (ICSC 2008), 4–7 August 2008, Santa Clara, California, USA, pp. 546–553. IEEE Computer Society (2008)
van der Aalst, W.: Process Mining: Data Science in Action. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
van Dongen, B., Alves De Medeiros, A., Verbeek, H., Weijters, A., van der Aalst, W.: The proM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Berlin (2005). https://doi.org/10.1007/11494744_25
Weijters, A., van der Aalst, W., Alves de Medeiros, A.: Process Mining with the Heuristic Miner Algorithm, WP 166. Eindhoven University of Technology, Eindhoven (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Leonardi, G., Striani, M., Quaglini, S., Cavallini, A., Montani, S. (2018). From Semantically Abstracted Traces to Process Mining and Process Model Comparison. In: Ghidini, C., Magnini, B., Passerini, A., Traverso, P. (eds) AI*IA 2018 – Advances in Artificial Intelligence. AI*IA 2018. Lecture Notes in Computer Science(), vol 11298. Springer, Cham. https://doi.org/10.1007/978-3-030-03840-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-03840-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-03839-7
Online ISBN: 978-3-030-03840-3
eBook Packages: Computer ScienceComputer Science (R0)