Exploring Coclustering for Serendipity Improvement in Content-Based Recommendation | SpringerLink
Skip to main content

Exploring Coclustering for Serendipity Improvement in Content-Based Recommendation

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2018 (IDEAL 2018)

Abstract

Content-based recommender systems are widely used in different domains. However, they are usually inefficient to produce serendipitous recommendations. A recommendation is serendipitous if it is both relevant and unexpected. The literature indicates that one possibility of achieving serendipity in recommendations is to design them using partial similarities between items. From such intuition, coclustering can be explored to offer serendipitous recommendations to users. In this paper, we propose a coclustering-based approach to implement content-based recommendations. Experiments carried out on the MovieLens 2K dataset show that our approach is competitive in terms of serendipity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Since \(\#\tau _i\) is independent of the rating qualification, a “bad” item can still be popular.

  2. 2.

    Since similarities among movies and tags have already been treated in the coclustering process, the maximization of J would insert an overspecialization in the process. The threshold score (0.25) was obtained empirically from extensive tests.

  3. 3.

    The original Movielens dataset is provided by GroupLens research group (http://www.grouplens.org). In this study, the following files were used: movies.dat, movie_tags.dat, tags.dat and user_ratedmovies-timestamps.dat.

References

  1. Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997)

    Article  Google Scholar 

  2. Billsus, D., Pazzani, M.J.: User modeling for adaptive news access. User Model. User-Adapt. Interact. 10(2–3), 147–180 (2000)

    Article  Google Scholar 

  3. Cantador, I., Brusilovsky, P.L., Kuflik, T.: 2nd Workshop on Information Heterogeneity and Fusion in Recommender Systems (HetRec2011). ACM (2011)

    Google Scholar 

  4. Ge, M., Delgado-Battenfeld, C., Jannach, D.: Beyond accuracy: evaluating recommender systems by coverage and serendipity. In: Proceedings of the 4th ACM Conference on Recommender Systems, pp. 257–260. ACM (2010)

    Google Scholar 

  5. de Gemmis, M., Lops, P., Semeraro, G., Musto, C.: An investigation on the serendipity problem in recommender systems. Inf. Process. Manag. 51(5), 695–717 (2015)

    Article  Google Scholar 

  6. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

    Article  Google Scholar 

  7. Iaquinta, L., De Gemmis, M., Lops, P., Semeraro, G., Filannino, M., Molino, P.: Introducing serendipity in a content-based recommender system. In: 8th International Conference on Hybrid Intelligent Systems (HIS 2008), pp. 168–173. IEEE (2008)

    Google Scholar 

  8. Iaquinta, L., De Gemmis, M., Lops, P., Semeraro, G., Molino, P.: Serendipitous encounters along dynamically personalized museum tours. In: Proceedings of the 1st Italian Information Retrieval Workshop (IIR 2010), pp. 101–102 (2010)

    Google Scholar 

  9. Ienco, D., Robardet, C., Pensa, R.G., Meo, R.: Parameter-less co-clustering for star-structured heterogeneous data. Data Min. Knowl. Discov. 26(2), 217–254 (2013)

    Article  MathSciNet  Google Scholar 

  10. Jenders, M., Lindhauer, T., Kasneci, G., Krestel, R., Naumann, F.: A serendipity model for news recommendation. In: Hölldobler, S., Krötzsch, M., Peñaloza, R., Rudolph, S. (eds.) KI 2015. LNCS (LNAI), vol. 9324, pp. 111–123. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24489-1_9

    Chapter  Google Scholar 

  11. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  12. Kotkov, D., Wang, S., Veijalainen, J.: A survey of serendipity in recommender systems. Knowl.-Based Syst. 111, 180–192 (2016)

    Article  Google Scholar 

  13. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003)

    Article  Google Scholar 

  14. Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_3

    Chapter  Google Scholar 

  15. Murakami, T., Mori, K., Orihara, R.: Metrics for evaluating the serendipity of recommendation lists. In: Satoh, K., Inokuchi, A., Nagao, K., Kawamura, T. (eds.) JSAI 2007. LNCS (LNAI), vol. 4914, pp. 40–46. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78197-4_5

    Chapter  Google Scholar 

  16. Pensa, R.G., Boulicaut, J.F., Cordero, F., Atzori, M.: Co-clustering numerical data under user-defined constraints. Stat. Anal. Data Min. 3(1), 38–55 (2010)

    MathSciNet  Google Scholar 

  17. Piao, S., Whittle, J.: A feasibility study on extracting twitter users’ interests using NLP tools for serendipitous connections. In: 3rd International Conference on Privacy, Security, Risk and Trust and 3rd International Conference on Social Computing, pp. 910–915. IEEE (2011)

    Google Scholar 

  18. Yoo, J., Choi, S.: Orthogonal nonnegative matrix tri-factorization for co-clustering: multiplicative updates on Stiefel manifolds. Inf. Process. Manag. 46(5), 559–570 (2010)

    Article  Google Scholar 

  19. Zheng, Q., Ip, H.H.: Customizable surprising recommendation based on the tradeoff between genre difference and genre similarity. In: International Conference on WEB Intelligence and Intelligent Agent Technology, vol. 1, pp. 702–709. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarajane Marques Peres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, A.M., da Silva Costa, F.H., Diaz, A.K.R., Peres, S.M. (2018). Exploring Coclustering for Serendipity Improvement in Content-Based Recommendation. In: Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros, A. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2018. IDEAL 2018. Lecture Notes in Computer Science(), vol 11314. Springer, Cham. https://doi.org/10.1007/978-3-030-03493-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03493-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03492-4

  • Online ISBN: 978-3-030-03493-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics