Abstract
Image quality in abdominal PET is degraded by respiratory motion. In this paper we compare existing data-driven gating methods for motion correction which are based on manifold learning, with a proposed method in which a convolutional neural network learns estimated motion fields in an end-to-end manner, and then uses those estimated motion fields to motion correct the PET frames. We find that this proposed network approach is unable to outperform manifold learning methods in the literature, in terms of the image quality of the motion corrected volumes. We investigate possible explanations for this negative result and discuss the benefits of these unsupervised approaches which remain the state of the art.
This work was supported by the Engineering and Physical Sciences Research Council under Grant EP/M009319/1 and by the Wellcome EPSRC Centre for Medical Engineering at Kings College London (WT203148/Z/16/Z).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Balfour, D.R., et al.: Respiratory motion correction of PET using MR-constrained PET-PET registration. Biomed. Eng. Online 14(1), 85 (2015)
Baumgartner, C.F., et al.: High-resolution dynamic MR imaging of the thorax for respiratory motion correction of PET using groupwise manifold alignment. Med. Image Anal. 18(7), 939–952 (2014)
Ben-Cohen, A., Klang, E., Raskin, S.P., Amitai, M.M., Greenspan, H.: Virtual PET images from CT data using deep convolutional networks: initial results. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 49–57. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68127-6_6
Chen, C., et al.: Learning to see in the dark. arXiv preprint arXiv:1805.01934 (2018)
Freeman, M.F., Tukey, J.W.: Transformations related to the angular and the square root. Ann. Math. Stat. 21(4), 607–611 (1950)
Hudson, H.M., Larkin, R.S.: Ordered subsets of projection data. IEEE Trans. Med. Imaging 13(4), 601–609 (1994)
Judenhofer, M.S.: Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat. Med. 14(4), 459–465 (2008)
Li, H., Fan, Y.: Non-rigid image registration using self-supervised fully convolutional networks without training data. arXiv preprint arXiv:1801.04012 (2018)
Miao, S.: A CNN regression approach for real-time 2D/3D registration. IEEE Trans. Med. Imaging 35(5), 1352–1363 (2016)
Remez, T., et al.: Deep convolutional denoising of low-light images (2017). http://arxiv.org/abs/1701.01687
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Shao, Y., et al.: Simultaneous PET and MR imaging. Phys. Med. Biol. 42(10), 1965 (1997)
Thielemans, K., et al.: Device-less gating for PET/CT using PCA. In: IEEE Nuclear Science Symposium Conference Record, pp. 3904–3910 (2011)
Thielemans, K., et al.: Comparison of different methods for data-driven respiratory gating of PET data. In: IEEE Nuclear Science Symposium Conference Record, pp. 3–6 (2013)
de Vos, B.D., Berendsen, F.F., Viergever, M.A., Staring, M., Išgum, I.: End-to-end unsupervised deformable image registration with a convolutional neural network. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 204–212. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_24
Xu, J., et al.: 200x low-dose pet reconstruction using deep learning. arXiv preprint arXiv:1712.04119 (2017)
Zhu, B., et al.: Image reconstruction by domain transform manifold learning. Nat. Publ. Group 555(7697), 487–492 (2017)
Acknowledgments
We would like to thank nVidia for kindly donating the Quadro P6000 GPU used in this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Clough, J.R., Balfour, D.R., Prieto, C., Reader, A.J., Marsden, P.K., King, A.P. (2018). Evaluation of Strategies for PET Motion Correction - Manifold Learning vs. Deep Learning. In: Stoyanov, D., et al. Understanding and Interpreting Machine Learning in Medical Image Computing Applications. MLCN DLF IMIMIC 2018 2018 2018. Lecture Notes in Computer Science(), vol 11038. Springer, Cham. https://doi.org/10.1007/978-3-030-02628-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-02628-8_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-02627-1
Online ISBN: 978-3-030-02628-8
eBook Packages: Computer ScienceComputer Science (R0)