Multi-View Clustering | SpringerLink
Skip to main content

Part of the book series: Unsupervised and Semi-Supervised Learning ((UNSESUL))

Abstract

With a plethora of data capturing modalities becoming available, the same data object often leaves different kinds of digital footprints. This naturally leads to datasets comprising the same set of data objects represented in different forms, called multi-view data. Among the most fundamental tasks in unsupervised learning is that of clustering, the task of grouping data objects into groups of related objects. Multi-view clustering (MVC) is a flourishing field in unsupervised learning; the MVC task considers leveraging multiple views of data objects in order to arrive at a more effective and accurate grouping than what can be achieved by just using one view of data. Multi-view clustering methods differ in the kind of modelling they use in order to fuse multiple views, by managing the synergies, complimentarities, and conflicts across data views, and arriving at a single clustering output across the multiple views in the dataset. This chapter provides a survey of a sample of multi-view clustering methods, with an emphasis on bringing out the wide diversity in solution formulations that have been considered. We pay specific attention to enable the reader understand the intuition behind each method ahead of describing the technical details of the method, to ensure that the survey is accessible to readers who may not be machine learning specialists. We also outline some popular datasets that have been used to empirically evaluate MVC methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 18589
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://mathworld.wolfram.com/L2-Norm.html.

  2. 2.

    http://mathworld.wolfram.com/FrobeniusNorm.html.

  3. 3.

    https://en.wikipedia.org/wiki/Laplacian_matrix.

  4. 4.

    https://en.wikipedia.org/wiki/Trace_(linear_algebra).

References

  1. Balachandran, V., Deepak, P., Khemani, D.: Interpretable and reconfigurable clustering of document datasets by deriving word-based rules. Knowl. Inf. Syst. 32(3), 475–503 (2012)

    Article  Google Scholar 

  2. Bickel, S., Scheffer, T.: Multi-view clustering. In: ICDM, vol. 4, pp. 19–26 (2004)

    Google Scholar 

  3. Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012)

    Article  Google Scholar 

  4. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pp. 92–100. ACM, New York (1998)

    Google Scholar 

  5. Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: 2001 Proceedings of the 17th International Conference on Data Engineering, pp. 421–430. IEEE, Piscataway (2001)

    Google Scholar 

  6. Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1548–1560 (2011)

    Article  Google Scholar 

  7. Cai, X., Nie, F., Huang, H.: Multi-view k-means clustering on big data. In: IJCAI, pp. 2598–2604 (2013)

    Google Scholar 

  8. Chen, X., Xu, X., Huang, J.Z., Ye, Y.: Tw-k-means: automated two-level variable weighting clustering algorithm for multiview data. IEEE Trans. Knowl. Data Eng. 25(4), 932–944 (2013)

    Article  Google Scholar 

  9. Deepak, P.: Mixkmeans: clustering question-answer archives. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 1576–1585 (2016)

    Google Scholar 

  10. Deepak, P., Garg, D., Shevade, S.: Latent space embedding for retrieval in question-answer archives. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 855–865 (2017)

    Google Scholar 

  11. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B Methodol. 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  12. Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph partitioning. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 269–274. ACM, New York (2001)

    Google Scholar 

  13. Ding, C., He, X., Simon, H.D.: Nonnegative Lagrangian relaxation of K-means and spectral clustering. In: European Conference on Machine Learning. pp. 530–538. Springer, Berlin (2005)

    Chapter  Google Scholar 

  14. Ding, C.H., Li, T., Jordan, M.I.: Convex and semi-nonnegative matrix factorizations. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 45–55 (2010)

    Article  Google Scholar 

  15. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. 95(25), 14863–14868 (1998)

    Article  Google Scholar 

  16. Fred, A.L., Jain, A.K.: Combining multiple clusterings using evidence accumulation. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 835–850 (2005)

    Article  Google Scholar 

  17. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)

    Article  MathSciNet  Google Scholar 

  18. Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)

    Article  Google Scholar 

  19. Hofmann, T.: Probabilistic latent semantic analysis. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 289–296. Morgan Kaufmann Publishers Inc., San Francisco (1999)

    Google Scholar 

  20. Hussain, S.F., Bashir, S.: Co-clustering of multi-view datasets. Knowl. Inf. Syst. 47(3), 545–570 (2016)

    Article  Google Scholar 

  21. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  22. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs (1988)

    Google Scholar 

  23. Jiang, Y., Liu, J., Li, Z., Lu, H.: Collaborative PLSA for multi-view clustering. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 2997–3000. IEEE, Piscataway (2012)

    Google Scholar 

  24. Jiang, B., Qiu, F., Wang, L.: Multi-view clustering via simultaneous weighting on views and features. Appl. Soft Comput. 47, 304–315 (2016)

    Article  Google Scholar 

  25. Jing, L., Ng, M.K., Huang, J.Z.: An entropy weighting K-means algorithm for subspace clustering of high-dimensional sparse data. IEEE Trans. Knowl. Data Eng. 19(8), 1026–1041 (2007)

    Article  Google Scholar 

  26. Kim, Y.M., Amini, M.R., Goutte, C., Gallinari, P.: Multi-view clustering of multilingual documents. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 821–822. ACM, New York (2010)

    Google Scholar 

  27. Kumar, A., Daumé, H.: A co-training approach for multi-view spectral clustering. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 393–400 (2011)

    Google Scholar 

  28. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788 (1999)

    Article  Google Scholar 

  29. Liao, T.W.: Clustering of time series data—a survey. Pattern Recogn. 38(11), 1857–1874 (2005)

    Article  Google Scholar 

  30. Liu, J., Wang, C., Gao, J., Han, J.: Multi-view clustering via joint nonnegative matrix factorization. In: Proceedings of the 2013 SIAM International Conference on Data Mining, pp. 252–260. SIAM, Philadelphia (2013)

    Chapter  Google Scholar 

  31. Liu, H., Liu, T., Wu, J., Tao, D., Fu, Y.: Spectral ensemble clustering. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 715–724. ACM, New York (2015)

    Google Scholar 

  32. Livescu, K., Sridharan, K., Kakade, S., Chaudhuri, K.: Multi-view clustering via canonical correlation analysis. In: NIPS Workshop: Learning from Multiple Sources (2008)

    Google Scholar 

  33. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, vol. 1, pp. 281–297 (1967)

    MathSciNet  MATH  Google Scholar 

  34. Meng, X., Liu, X., Tong, Y., Glänzel, W., Tan, S.: Multi-view clustering with exemplars for scientific mapping. Scientometrics 105(3), 1527–1552 (2015)

    Article  Google Scholar 

  35. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)

    Google Scholar 

  36. Nie, F., Huang, H., Cai, X., Ding, C.H.: Efficient and robust feature selection via joint 2, 1-norms minimization. In: Advances in Neural Information Processing Systems, pp. 1813–1821 (2010)

    Google Scholar 

  37. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  38. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  39. Tao, Z., Liu, H., Li, S., Ding, Z., Fu, Y.: From ensemble clustering to multi-view clustering. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI), pp. 2843–2849 (2017)

    Google Scholar 

  40. Thompson, B.: Canonical correlation analysis. In: Encyclopedia of Statistics in Behavioral Science. Wiley, West Sussex (2005)

    Google Scholar 

  41. Wang, H., Nie, F., Huang, H.: Multi-view clustering and feature learning via structured sparsity. In: International Conference on Machine Learning, pp. 352–360 (2013)

    Google Scholar 

  42. Wang, X., Qian, B., Ye, J., Davidson, I.: Multi-objective multi-view spectral clustering via pareto optimization. In: Proceedings of the 2013 SIAM International Conference on Data Mining, pp. 234–242. SIAM, Philadelphia (2013)

    Chapter  Google Scholar 

  43. Wang, D., Yin, Q., He, R., Wang, L., Tan, T.: Multi-view clustering via structured low-rank representation. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1911–1914. ACM, New York (2015)

    Google Scholar 

  44. Wang, C.D., Lai, J.H., Philip, S.Y.: Multi-view clustering based on belief propagation. IEEE Trans. Knowl. Data Eng. 28(4), 1007–1021 (2016)

    Article  Google Scholar 

  45. Wang, Y., Chen, L., Li, X.L.: Multiple medoids based multi-view relational fuzzy clustering with minimax optimization. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, pp. 2971–2977 (2017)

    Google Scholar 

  46. Xu, J., Han, J., Nie, F.: Discriminatively embedded K-means for multi-view clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5356–5364 (2016)

    Google Scholar 

  47. Xu, Y.M., Wang, C.D., Lai, J.H.: Weighted multi-view clustering with feature selection. Pattern Recogn. 53, 25–35 (2016)

    Article  Google Scholar 

  48. Zhang, X., Zhang, X., Liu, H.: Multi-task multi-view clustering for non-negative data. In: IJCAI, pp. 4055–4061 (2015)

    Google Scholar 

  49. Zhang, X., Zong, L., Liu, X., Yu, H.: Constrained NMF-based multi-view clustering on unmapped data. In: AAAI, pp. 3174–3180 (2015)

    Google Scholar 

  50. Zhao, H., Ding, Z., Fu, Y.: Multi-view clustering via deep matrix factorization. In: AAAI, pp. 2921–2927 (2017)

    Google Scholar 

  51. Zong, L., Zhang, X., Zhao, L., Yu, H., Zhao, Q.: Multi-view clustering via multi-manifold regularized non-negative matrix factorization. Neural Netw. 88, 74–89 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak P .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

P, D., Jurek-Loughrey, A. (2019). Multi-View Clustering. In: P, D., Jurek-Loughrey, A. (eds) Linking and Mining Heterogeneous and Multi-view Data. Unsupervised and Semi-Supervised Learning. Springer, Cham. https://doi.org/10.1007/978-3-030-01872-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01872-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01871-9

  • Online ISBN: 978-3-030-01872-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics