An Experimental Evaluation of Algorithms for Opinion Mining in Multi-domain Corpus in Albanian | SpringerLink
Skip to main content

An Experimental Evaluation of Algorithms for Opinion Mining in Multi-domain Corpus in Albanian

  • Conference paper
  • First Online:
Foundations of Intelligent Systems (ISMIS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11177))

Included in the following conference series:

  • 867 Accesses

Abstract

Opinion mining is an important tool to find out what others think about something. Most of methods used for opinion mining are based on machine learning. In this paper we present an experimental evaluation of machine learning algorithms used for opinion mining in a multi-domain corpus in Albanian language. We have created 11 multi-domains corpuses combining the opinions from 5 different topics. The opinions are classified as positive or negative. All the corpuses are used to train and test for opinion mining the performance of 50 classification algorithms. Out of these, there are seven best performing algorithms out of which three are based on Naïve Bayes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, B.: Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers (2012)

    Google Scholar 

  2. Hastie, T., Tibshirani, R., Friedman, J.: Unsupervised Learning. In: Hastie, T., Friedman, J., Tibshirani, R. (eds.) The Elements of Statistical Learning. SSS, pp. 485–585. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7_14

    Chapter  MATH  Google Scholar 

  3. Unnisa, M., Ameen, A., Raziuddin, S.: Opinion mining on Twitter data using unsupervised learning technique. Int. J. Comput. Appl. 148(12), 12–19 (2016). https://doi.org/10.5120/ijca2016911317

    Article  Google Scholar 

  4. Gautam, G., Yadav, D.: Sentiment analysis of twitter data using machine learning approaches and semantic analysis. In: Seventh International Conference on Contemporary Computing (IC3), pp. 437–442 (2014)

    Google Scholar 

  5. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of the ACL-2002 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86 (2002). https://doi.org/10.3115/1118693.1118704

  6. Tripathy, A., Agrawal, A., Rath, S.K.: Classification of sentiment reviews using n-gram machine learning approach. Expert Syst. Appl. 57(C), 117–126 (2016). https://doi.org/10.1016/j.eswa.2016.03.028

    Article  Google Scholar 

  7. Perea-Ortega, M.J., Martín-Valdivia, T.M., Ureña-López, A.L., Martínez-Cámara, E.: Improving polarity classification of bilingual parallel corpora combining machine learning and semantic orientation approaches. J. Assoc. Inf. Sci. Technol. 64(9), 1864–1877 (2013). https://doi.org/10.1002/asi.22884

    Article  Google Scholar 

  8. Li, S.S., Huang, C.R., Zong, C.Q.: Multi-domain sentiment classification with classifier combination. J. Comput. Sci. Technol. 26(1), 25–33 (2011). https://doi.org/10.1007/s11390-011-9412-y

    Article  Google Scholar 

  9. Wu, F., Huang, Y.: Collaborative multi-domain sentiment classification data mining. In: IEEE International Conference on Data Mining (2015). https://doi.org/10.1109/icdm.2015.68

  10. Lommatzsch, A., Butow F., Ploch, D., Albayrak, S.: Towards the automatic sentiment analysis of German news and forum documents. In: 17th International Conference on Innovations for Community Services, pp. 18–33 (2017). https://doi.org/10.1007/978-3-319-60447-3_2

    Chapter  Google Scholar 

  11. Farra, N., Challita, E., Assi, A.R., Hajj, H.: Sentence-level and document-level sentiment mining for Arabic texts. In: IEEE International Conference on Data Mining Workshops (ICDMW) (2010). https://doi.org/10.1109/icdmw.2010.95

  12. Miranda, H.C., Guzmán, J.: A review of sentiment analysis in Spanish. Tecciencia, 12(22), 35–48 (2017). Bogotá. http://dx.doi.org/10.18180/tecciencia.2017.22.5

  13. Catal, C., Nangir, M.: A sentiment classification model based on multiple classifiers. Appl. Soft Comput. J. 50, 135–141 (2017). https://doi.org/10.1016/j.asoc.2016.11.022

    Article  Google Scholar 

  14. Biba, M., Mane, M.: Sentiment analysis through machine learning: an experimental evaluation for Albanian. In: Thampi, S., Abraham, A., Pal, S., Rodriguez, J. (eds.) Recent Advances in Intelligent Informatics, Part of the Advances in Intelligent Systems and Computing (AISC), vol. 235, pp. 195–203. Springer, Cham (2014). doi: https://doi.org/10.1007/978-3-319-01778-5_20

    Google Scholar 

  15. Kote, N., Biba, M., Trandafili, E.: A thorough experimental evaluation of algorithms for opinion mining in Albanian. In: Barolli, L., Xhafa, F., Javaid, N., Spaho, E., Kolici, V. (eds.) EIDWT 2018: Advances in Internet, Data & Web Technologies, vol. 17, pp. 525–536. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75928-9_47

    Chapter  Google Scholar 

  16. Sadiku, J., Biba, M.: Automatic stemming of Albanian through a rule-based approach. J. Int. Res. Publ. Lang. Individ. Soc. 6 (2012). ISSN-1313-2547

    Google Scholar 

  17. Witten, H.I., Frank, E., Hall, A.M., Pal, J.C.: Data Mining, Practical Machine Learning Tools and Techniques, 4th edn. Elsevier Inc., Amsterdam (2017). ISBN: 9780128042915

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelda Kote .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kote, N., Biba, M., Trandafili, E. (2018). An Experimental Evaluation of Algorithms for Opinion Mining in Multi-domain Corpus in Albanian. In: Ceci, M., Japkowicz, N., Liu, J., Papadopoulos, G., Raś, Z. (eds) Foundations of Intelligent Systems. ISMIS 2018. Lecture Notes in Computer Science(), vol 11177. Springer, Cham. https://doi.org/10.1007/978-3-030-01851-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01851-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01850-4

  • Online ISBN: 978-3-030-01851-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics