Abstract
Opinion mining is an important tool to find out what others think about something. Most of methods used for opinion mining are based on machine learning. In this paper we present an experimental evaluation of machine learning algorithms used for opinion mining in a multi-domain corpus in Albanian language. We have created 11 multi-domains corpuses combining the opinions from 5 different topics. The opinions are classified as positive or negative. All the corpuses are used to train and test for opinion mining the performance of 50 classification algorithms. Out of these, there are seven best performing algorithms out of which three are based on Naïve Bayes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Liu, B.: Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers (2012)
Hastie, T., Tibshirani, R., Friedman, J.: Unsupervised Learning. In: Hastie, T., Friedman, J., Tibshirani, R. (eds.) The Elements of Statistical Learning. SSS, pp. 485–585. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7_14
Unnisa, M., Ameen, A., Raziuddin, S.: Opinion mining on Twitter data using unsupervised learning technique. Int. J. Comput. Appl. 148(12), 12–19 (2016). https://doi.org/10.5120/ijca2016911317
Gautam, G., Yadav, D.: Sentiment analysis of twitter data using machine learning approaches and semantic analysis. In: Seventh International Conference on Contemporary Computing (IC3), pp. 437–442 (2014)
Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of the ACL-2002 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86 (2002). https://doi.org/10.3115/1118693.1118704
Tripathy, A., Agrawal, A., Rath, S.K.: Classification of sentiment reviews using n-gram machine learning approach. Expert Syst. Appl. 57(C), 117–126 (2016). https://doi.org/10.1016/j.eswa.2016.03.028
Perea-Ortega, M.J., Martín-Valdivia, T.M., Ureña-López, A.L., Martínez-Cámara, E.: Improving polarity classification of bilingual parallel corpora combining machine learning and semantic orientation approaches. J. Assoc. Inf. Sci. Technol. 64(9), 1864–1877 (2013). https://doi.org/10.1002/asi.22884
Li, S.S., Huang, C.R., Zong, C.Q.: Multi-domain sentiment classification with classifier combination. J. Comput. Sci. Technol. 26(1), 25–33 (2011). https://doi.org/10.1007/s11390-011-9412-y
Wu, F., Huang, Y.: Collaborative multi-domain sentiment classification data mining. In: IEEE International Conference on Data Mining (2015). https://doi.org/10.1109/icdm.2015.68
Lommatzsch, A., Butow F., Ploch, D., Albayrak, S.: Towards the automatic sentiment analysis of German news and forum documents. In: 17th International Conference on Innovations for Community Services, pp. 18–33 (2017). https://doi.org/10.1007/978-3-319-60447-3_2
Farra, N., Challita, E., Assi, A.R., Hajj, H.: Sentence-level and document-level sentiment mining for Arabic texts. In: IEEE International Conference on Data Mining Workshops (ICDMW) (2010). https://doi.org/10.1109/icdmw.2010.95
Miranda, H.C., Guzmán, J.: A review of sentiment analysis in Spanish. Tecciencia, 12(22), 35–48 (2017). Bogotá. http://dx.doi.org/10.18180/tecciencia.2017.22.5
Catal, C., Nangir, M.: A sentiment classification model based on multiple classifiers. Appl. Soft Comput. J. 50, 135–141 (2017). https://doi.org/10.1016/j.asoc.2016.11.022
Biba, M., Mane, M.: Sentiment analysis through machine learning: an experimental evaluation for Albanian. In: Thampi, S., Abraham, A., Pal, S., Rodriguez, J. (eds.) Recent Advances in Intelligent Informatics, Part of the Advances in Intelligent Systems and Computing (AISC), vol. 235, pp. 195–203. Springer, Cham (2014). doi: https://doi.org/10.1007/978-3-319-01778-5_20
Kote, N., Biba, M., Trandafili, E.: A thorough experimental evaluation of algorithms for opinion mining in Albanian. In: Barolli, L., Xhafa, F., Javaid, N., Spaho, E., Kolici, V. (eds.) EIDWT 2018: Advances in Internet, Data & Web Technologies, vol. 17, pp. 525–536. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75928-9_47
Sadiku, J., Biba, M.: Automatic stemming of Albanian through a rule-based approach. J. Int. Res. Publ. Lang. Individ. Soc. 6 (2012). ISSN-1313-2547
Witten, H.I., Frank, E., Hall, A.M., Pal, J.C.: Data Mining, Practical Machine Learning Tools and Techniques, 4th edn. Elsevier Inc., Amsterdam (2017). ISBN: 9780128042915
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Kote, N., Biba, M., Trandafili, E. (2018). An Experimental Evaluation of Algorithms for Opinion Mining in Multi-domain Corpus in Albanian. In: Ceci, M., Japkowicz, N., Liu, J., Papadopoulos, G., Raś, Z. (eds) Foundations of Intelligent Systems. ISMIS 2018. Lecture Notes in Computer Science(), vol 11177. Springer, Cham. https://doi.org/10.1007/978-3-030-01851-1_42
Download citation
DOI: https://doi.org/10.1007/978-3-030-01851-1_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01850-4
Online ISBN: 978-3-030-01851-1
eBook Packages: Computer ScienceComputer Science (R0)