Biomechanical Analysis: Adapting to Users’ Physiological Preconditions and Demands | SpringerLink
Skip to main content

Biomechanical Analysis: Adapting to Users’ Physiological Preconditions and Demands

  • Chapter
  • First Online:
Developing Support Technologies

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 23))

Abstract

Exoskeletal systems for the workplace are mostly designed to reduce strain and to prevent musculoskeletal disorders. In order to design these systems accordingly, biomechanical and physiological demands of the workplace and the individual’s response to these demands have to be known. Hence, biomechanical aspects during application of the exoskeletal systems have to be evaluated. Biomechanical analysis delivers tools and methods to investigate responses of users caused by the interaction between user, workplace, and exoskeleton. This section summarizes common methods for investigations on body movement, muscular and metabolic activity, applied forces, and soft tissue constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alkjaer, T., Simonsen, E. B., & Dyhre-Poulsen, P. (2001). Comparison of inverse dynamics calculated by two- and three-dimensional models during walking. Gait & Posture, 13(2), 73–77.

    Article  Google Scholar 

  2. Beckerle, P., Salvietti, G., Unal, R., Prattichizzo, D., Rossi, S., & Castellini, C. (2017). A human-robot interaction perspective on assistive and rehabilitation robotics. Frontiers in neurorobotics, 11, 24.

    Article  Google Scholar 

  3. Borg, G. (1998). Borg’s perceived exertion and pain scales. Chicago: Human kinetics.

    Google Scholar 

  4. Borg, E., & Kaijser, L. (2006). A comparison between three rating scales for perceived exertion and two different work tests. Scandinavian Journal of Medicine and Science in Sports, 16(1), 57–69.

    Article  Google Scholar 

  5. Bullinger, M., & Kirchberger, I. (1998). Fragebogen zum Allgemeinen Gesundheitszustand SF12. Göttingen: Hogrefe.

    Google Scholar 

  6. Buxi, D., Kim, S., van Helleputte, N., Altini, M., Wijsman, J., & Yazicioglu, R. F. (2012). Correlation between electrode-tissue impedance and motion artifact in biopotential recordings. IEEE Sensors Journal, 12(12), 3373–3383.

    Article  Google Scholar 

  7. Cempini, M., Marzegan, A., Rabuffetti, M., Cortese, M., Vitiello, N., & Ferrarin, M. (2014). Analysis of relative displacement between the HX wearable robotic exoskeleton and the user’s hand. Journal of Neuroengineering and Rehabilitation, 11(1), 147.

    Article  Google Scholar 

  8. Chowdhury, R. H., Reaz, M. B., Ali, M. A. B. M., Bakar, A. A., Chellappan, K., & Chang, T. G. (2013). Surface electromyography signal processing and classification techniques. Sensors, 13(9), 12431–12466.

    Article  Google Scholar 

  9. Du, F., Chen, J., & Wang, X. (2016). Human motion measurement and mechanism analysis during exoskeleton design. In 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP), IEEE, (pp. 1–5).

    Google Scholar 

  10. Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149–1160.

    Article  Google Scholar 

  11. Franz, J. R., & Kram, R. (2014). Advanced age and the mechanics of uphill walking. A joint-level, inverse dynamic analysis. Gait & Posture, 39(1), 135–140.

    Article  Google Scholar 

  12. Galle, S., Malcolm, P., Collins, S. H., & de Clercq, D. (2017). Reducing the metabolic cost of walking with an ankle exoskeleton. Interaction between actuation timing and power. Journal of Neuroengineering and Rehabilitation, 14(1), 35.

    Article  Google Scholar 

  13. Halaki, M., & Ginn, K. (2012). Normalization of EMG signals: To normalize or not to normalize and what to normalize to? In Computational intelligence in electromyography analysis-a perspective on current applications and future challenges. InTech.

    Google Scholar 

  14. Hamaoka, T., McCully, K., Niwayama, M., & Britton, B. C. (2011). The use of muscle near-infrared spectroscopy in sport, health and medical sciences: Recent developments. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 369(1955), 4591–4604.

    Article  Google Scholar 

  15. Hamberg-Van Reenen, H. H., van der Beek, A. J., Blatter, B. M., van Mechelen, W., & Bongers, P. M. (2009). Age-related differences in muscular capacity among workers. International Archieves of Occupational and Environmental Health, 82(9), 1115–112.

    Article  Google Scholar 

  16. Hill, D., Holloway, C. S., Morgado-Ramirez, D. Z., Smitham, P., & Pappas, Y. (2017). What are user perspectives of exoskeleton technology? A literature review. International Journal of Technology Assessment in Health Care, 33(2), 160–167.

    Article  Google Scholar 

  17. Hwang, B., & Jeon, D. (2015). A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors. Sensors, 15(4), 8337–8357.

    Article  Google Scholar 

  18. Jackson, R. W., Dembia, C. L., Delp, S. L., & Collins, S. H. (2017). Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walking. The Journal of Experimental Biology, 220(Pt 11), 2082–2095.

    Article  Google Scholar 

  19. Jarrasse, N., & Morel, G. (2012). Connecting a Human Limb to an Exoskeleton. IEEE Transactions on Robotics, 28(3), 697–709.

    Article  Google Scholar 

  20. Jones, S., Chiesa, S. T., Chaturvedi, N., & Hughes, A. D. (2016). Recent developments in near-infrared spectroscopy (NIRS) for the assessment of local skeletal muscle microvascular function and capacity to utilise oxygen. Artery research, 16, 25–33.

    Article  Google Scholar 

  21. de Looze, M. P., Bosch, T., Krause, F., Stadler, K. S., & O’Sullivan, L. W. (2016). Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics, 59(5), 671–681.

    Article  Google Scholar 

  22. Malcolm, P., Quesada, R. E., Caputo, J. M., & Collins, S. H. (2015). The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking. Journal of Neuroengineering and Rehabilitation, 12(1), 21.

    Article  Google Scholar 

  23. McGibbon, C. A., Brandon, S. C. E., Brookshaw, M., & Sexton, A. (2017). Effects of an over-ground exoskeleton on external knee moments during stance phase of gait in healthy adults. The Knee, 24(5), 977–993.

    Article  Google Scholar 

  24. Otten, B. M., Weidner, R., & Argubi-Wollesen, A. (2018). Evaluation of a novel active exoskeleton for tasks at or above head level. IEEE Robotics and Automation Letters, 3(3), 2408–2415.

    Article  Google Scholar 

  25. Panizzolo, F. A., Galiana, I., Asbeck, A. T., Siviy, C., Schmidt, K., Holt, K. G., et al. (2016). A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking. Journal of neuroengineering and rehabilitation, 13(1), 43.

    Article  Google Scholar 

  26. Rashedi, E., Kim, S., Nussbaum, M. A., & Agnew, M. J. (2014). Ergonomic evaluation of a wearable assistive device for overhead work. Ergonomics, 57(12), 1864–1874.

    Article  Google Scholar 

  27. Robert-Lachaine, X., Mecheri, H., Larue, C., & Plamondon, A. (2017). Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis. Medical & Biological Engineering & Computing, 55(4), 609–619.

    Article  Google Scholar 

  28. Rukina, N. N., Kuznetsov, A. N., Borzikov, V. V., Komkova, O. V., & Belova, A. N. (2016). Surface electromyography: its role and potential in the development of exoskeleton. Sovermennye Tehnologii V Medicine, 8(2), 109–117.

    Article  Google Scholar 

  29. Singh, T., & Koh, M. (2009). Effects of backpack load position on spatiotemporal parameters and trunk forward lean. Gait & Posture, 29(1), 49–53.

    Article  Google Scholar 

  30. Strube, E. M., Sumner, A., Kollock, R., Games, K. E., Lackamp, M. A., Mizutani, M., et al. (2017). The effect of military load carriage on postural sway, forward trunk lean, and pelvic girdle motion. International Journal of Exercise Science, 1(10), 25–36.

    Google Scholar 

  31. Valevicius, A. M., Jun, P. Y., Hebert, J. S., & Vette, A. H. (2018). Use of optical motion capture for the analysis of normative upper body kinematics during functional upper limb tasks. A systematic review. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 40, 1–15.

    Article  Google Scholar 

Download references

Acknowledgements

This research is part of the project “smartASSIST—Smart, AdjuStable, Soft and Intelligent Support Technologies” funded by the German Federal Ministry of Education and Research (BMBF, funding no. 16SV7114) and supervised by VDI/VDE Innovation + Technik GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Argubi-Wollesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Argubi-Wollesen, A., Weidner, R. (2018). Biomechanical Analysis: Adapting to Users’ Physiological Preconditions and Demands. In: Karafillidis, A., Weidner, R. (eds) Developing Support Technologies. Biosystems & Biorobotics, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-01836-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01836-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01835-1

  • Online ISBN: 978-3-030-01836-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics