Abstract
The idea of human-robot collaboration (HRC) in assembly follows the aim of wisely combining the special capabilities of human workers and of robots in order to increase productivity in flexible assembly processes and to reduce the physical strain on human workers. The high degree of cooperation goes along with the fact that the effort to introduce an HRC workstation is fairly high and HRC has hardly been implemented in current productions so far. A major reason for this is a lack of planning and simulation software for the HRC. Therefore, this paper introduces an approach of how to implement such a software on the basis of the Robot Operating System (ROS) framework in order to enable a realistic simulation of the direct cooperation between human workers and robots.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Bender, M., Braun, M., Rally, P., & Scholtz, O. (2016). Leichtbauroboter in der manuellen Montage - Einfach einfach Anfangen: Erste Erfahrungen von Anwenderunternehmen.
Busch, F., Wischniewski, S., & Deuse, J. (2013). Application of a character animation SDK to design ergonomic human-robot-collaboration. In Proceedings of the 2nd International Symposium on Digital Human Modeling (DHM) (pp. 1–7).
Busch, F. (2015). Ein Konzept zur Abbildung des Menschen in der Offline-Programmierung und Simulation von Mensch-Roboter-Kollaborationen (Ph.D. thesis) University Dortmund.
Chitta, S. (2016). MoveIt!: An introduction. In A. Koubaa (Ed.), Robot operating system (ROS): The complete reference (Vol. 1, pp. 3-27). Cham: Springer International Publishing.
Diankov, R. (2010). Automated construction of robotic manipulation programs (Ph.D. thesis). Carnegie Mellon University, Robotics Institute.
DIN ISO/TS 15066. (2016). Roboter und Robotikgeräte - Kollaborierende Roboter.
Fritzsche, L. (2010). Work group diversity and digital ergonomic assessment as new approaches for compensating the aging workforce in automotive production (Ph.D. thesis). University Dresden.
Glogowski, P., Lemmerz, K., Schulte, L., Barthelmey, A., Hypki, A., Kuhlenkötter, B., et al. (2017). Task-based Simulation Tool for Human-Robot Collaboration within Assembly Systems. In T. Schüppstuhl, J. Franke, & K. Tracht. (Eds.), Tagungsband des 2. Kongresses Montage Handhabung Industrieroboter (pp. 155–163). Berlin: Springer.
Gradil, A., & Ferreira, J. F. (2016). A visualisation and simulation framework for local and remote HRI experimentation. In: IEEE 23 Encontro Português der Computação o Gráfica e Interação (EGCGI).
Guzman, R., Navarro, R., Beneto, M., & Carbonell, D. (2016). Robotnik—professional service robotics applications with ROS. In A. Koubaa (Eds.), Robot operating system (ROS): The complete reference (Vol. 1, pp. 253–288). Cham: Springer International Publishing.
Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., & Burgard, W. (2013). OctoMap: An efficient probabilistic 3D mapping framework based on octrees. In Autonomous robots (pp. 189–206).
Hua, Y., Zander, S., Bordignon, M., & Hein, B. (2016). From AutomationML to ROS: A model-driven approach for software engineering of industrial robotics using ontological reasoning. In IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA) (pp. 1–8, 2016).
Hypki, A. (2008). Beitrag zur Simulation industrieller Automatisierungssysteme (Ph.D. thesis). University Dortmund.
Joseph, L. (2015). Learning robotics using Python (Vol. 1). Packt Publishing.
Joseph, L. (2015). Mastering ROS for robotics programming (Vol. 1). Packt Publishing.
Kallweit, S., Walenta, R., & Gottschalk, M. (2016). ROS based safety concept for collaborative robots in industrial applications. In T. Borangiu (Ed.), Advances in robot design and intelligent control: Proceedings of the 24th international conference on robotics in Alpe-Adria-Danube Region (RAAD) (pp. 27–35). Cham: Springer International Publishing.
Kavraki, L. E., Svestka, P., Latombe, J.-C., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 566–580.
Koenig, N., & Howard, A. (2004). Design and use paradigms for Gazebo, an open-source multi-robot simulator. In International Conference on Intelligent Robots and Systems (pp. 2149–2154). Sendai, Japan.
LaValle, S. M., & Kuffner, J. J. (2001). Randomized kinodynamic planning. The International Journal of Robotics Research, 378–400.
Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., et al. (Eds.). (2009) ROS: An open-source robot operating system. In ICRA Workshop on Open Source Software
Quigley, M., Gerkey, B., & Smart, W. D. (2015). Programming robots with ROS (Vol. 1). O’Reilly Media.
Pan, J., Chitta, S., & Manocha, D. (2012). FCL: A general purpose library for collision and proximity queries. IEEE International Conference on Robotics and Automation. (pp. 3859–3866).
Rosell, J., Pérez, A.., Aliakbar, A.., Palomo, L., & García, N. (2014). The Kautham Project: A teaching and research tool for robot motion planning. In Proceedings of the IEEE Emerging Technology and Factory Automation (ETFA) (pp. 1–8).
Şucan, I. A., Moll, M., & Kavraki, L. E. (2012). The open motion planning library. IEEE Robotics & Automation Magazine, 72–82.
Şucan, I. A., & Kavraki, L. E. (2012). A sampling-based tree planner for systems with complex dynamics. IEEE Transactions on Robotics 116–131.
Tsarouchi, P., Makris, S., & Chryssolouris, G. (2016). Human-robot interaction review and challenges on task planning and programming. International Journal of Computer Integrated Manufacturing, 916–931.
Weber, W. (2017). Industrieroboter (Vol. 3). KG: Carl Hanser Verlag GmbH & Co.
Acknowledgements
The research and development project “KoMPI” (http://kompi.org/) is funded by the German Federal Ministry of Education and Research (BMBF) within the Framework Concept “Research for Tomorrow’s Production” (fund number 02P15A060) and managed by the Project Management Agency Forschungszentrum Karlsruhe, Production and Manufacturing Technologies Division (PTKA-PFT).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Glogowski, P., Lemmerz, K., Hypki, A., Kuhlenkötter, B. (2018). ROS-Based Robot Simulation in Human-Robot Collaboration. In: Karafillidis, A., Weidner, R. (eds) Developing Support Technologies. Biosystems & Biorobotics, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-01836-8_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-01836-8_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01835-1
Online ISBN: 978-3-030-01836-8
eBook Packages: Computer ScienceComputer Science (R0)