ROS-Based Robot Simulation in Human-Robot Collaboration | SpringerLink
Skip to main content

ROS-Based Robot Simulation in Human-Robot Collaboration

  • Chapter
  • First Online:
Developing Support Technologies

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 23))

Abstract

The idea of human-robot collaboration (HRC) in assembly follows the aim of wisely combining the special capabilities of human workers and of robots in order to increase productivity in flexible assembly processes and to reduce the physical strain on human workers. The high degree of cooperation goes along with the fact that the effort to introduce an HRC workstation is fairly high and HRC has hardly been implemented in current productions so far. A major reason for this is a lack of planning and simulation software for the HRC. Therefore, this paper introduces an approach of how to implement such a software on the basis of the Robot Operating System (ROS) framework in order to enable a realistic simulation of the direct cooperation between human workers and robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.ros.org/.

References

  1. Bender, M., Braun, M., Rally, P., & Scholtz, O. (2016). Leichtbauroboter in der manuellen Montage - Einfach einfach Anfangen: Erste Erfahrungen von Anwenderunternehmen.

    Google Scholar 

  2. Busch, F., Wischniewski, S., & Deuse, J. (2013). Application of a character animation SDK to design ergonomic human-robot-collaboration. In Proceedings of the 2nd International Symposium on Digital Human Modeling (DHM) (pp. 1–7).

    Google Scholar 

  3. Busch, F. (2015). Ein Konzept zur Abbildung des Menschen in der Offline-Programmierung und Simulation von Mensch-Roboter-Kollaborationen (Ph.D. thesis) University Dortmund.

    Google Scholar 

  4. Chitta, S. (2016). MoveIt!: An introduction. In A. Koubaa (Ed.), Robot operating system (ROS): The complete reference (Vol. 1, pp. 3-27). Cham: Springer International Publishing.

    Google Scholar 

  5. Diankov, R. (2010). Automated construction of robotic manipulation programs (Ph.D. thesis). Carnegie Mellon University, Robotics Institute.

    Google Scholar 

  6. DIN ISO/TS 15066. (2016). Roboter und Robotikgeräte - Kollaborierende Roboter.

    Google Scholar 

  7. Fritzsche, L. (2010). Work group diversity and digital ergonomic assessment as new approaches for compensating the aging workforce in automotive production (Ph.D. thesis). University Dresden.

    Google Scholar 

  8. Glogowski, P., Lemmerz, K., Schulte, L., Barthelmey, A., Hypki, A., Kuhlenkötter, B., et al. (2017). Task-based Simulation Tool for Human-Robot Collaboration within Assembly Systems. In T. Schüppstuhl, J. Franke, & K. Tracht. (Eds.), Tagungsband des 2. Kongresses Montage Handhabung Industrieroboter (pp. 155–163). Berlin: Springer.

    Chapter  Google Scholar 

  9. Gradil, A., & Ferreira, J. F. (2016). A visualisation and simulation framework for local and remote HRI experimentation. In: IEEE 23 Encontro Português der Computação o Gráfica e Interação (EGCGI).

    Google Scholar 

  10. Guzman, R., Navarro, R., Beneto, M., & Carbonell, D. (2016). Robotnik—professional service robotics applications with ROS. In A. Koubaa (Eds.), Robot operating system (ROS): The complete reference (Vol. 1, pp. 253–288). Cham: Springer International Publishing.

    Google Scholar 

  11. Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., & Burgard, W. (2013). OctoMap: An efficient probabilistic 3D mapping framework based on octrees. In Autonomous robots (pp. 189–206).

    Article  Google Scholar 

  12. Hua, Y., Zander, S., Bordignon, M., & Hein, B. (2016). From AutomationML to ROS: A model-driven approach for software engineering of industrial robotics using ontological reasoning. In IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA) (pp. 1–8, 2016).

    Google Scholar 

  13. Hypki, A. (2008). Beitrag zur Simulation industrieller Automatisierungssysteme (Ph.D. thesis). University Dortmund.

    Google Scholar 

  14. Joseph, L. (2015). Learning robotics using Python (Vol. 1). Packt Publishing.

    Google Scholar 

  15. Joseph, L. (2015). Mastering ROS for robotics programming (Vol. 1). Packt Publishing.

    Google Scholar 

  16. Kallweit, S., Walenta, R., & Gottschalk, M. (2016). ROS based safety concept for collaborative robots in industrial applications. In T. Borangiu (Ed.), Advances in robot design and intelligent control: Proceedings of the 24th international conference on robotics in Alpe-Adria-Danube Region (RAAD) (pp. 27–35). Cham: Springer International Publishing.

    Google Scholar 

  17. Kavraki, L. E., Svestka, P., Latombe, J.-C., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 566–580.

    Article  Google Scholar 

  18. Koenig, N., & Howard, A. (2004). Design and use paradigms for Gazebo, an open-source multi-robot simulator. In International Conference on Intelligent Robots and Systems (pp. 2149–2154). Sendai, Japan.

    Google Scholar 

  19. LaValle, S. M., & Kuffner, J. J. (2001). Randomized kinodynamic planning. The International Journal of Robotics Research, 378–400.

    Article  Google Scholar 

  20. Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., et al. (Eds.). (2009) ROS: An open-source robot operating system. In ICRA Workshop on Open Source Software

    Google Scholar 

  21. Quigley, M., Gerkey, B., & Smart, W. D. (2015). Programming robots with ROS (Vol. 1). O’Reilly Media.

    Google Scholar 

  22. Pan, J., Chitta, S., & Manocha, D. (2012). FCL: A general purpose library for collision and proximity queries. IEEE International Conference on Robotics and Automation. (pp. 3859–3866).

    Google Scholar 

  23. Rosell, J., Pérez, A.., Aliakbar, A.., Palomo, L., & García, N. (2014). The Kautham Project: A teaching and research tool for robot motion planning. In Proceedings of the IEEE Emerging Technology and Factory Automation (ETFA) (pp. 1–8).

    Google Scholar 

  24. Şucan, I. A., Moll, M., & Kavraki, L. E. (2012). The open motion planning library. IEEE Robotics & Automation Magazine, 72–82.

    Article  Google Scholar 

  25. Şucan, I. A., & Kavraki, L. E. (2012). A sampling-based tree planner for systems with complex dynamics. IEEE Transactions on Robotics 116–131.

    Article  Google Scholar 

  26. Tsarouchi, P., Makris, S., & Chryssolouris, G. (2016). Human-robot interaction review and challenges on task planning and programming. International Journal of Computer Integrated Manufacturing, 916–931.

    Article  Google Scholar 

  27. Weber, W. (2017). Industrieroboter (Vol. 3). KG: Carl Hanser Verlag GmbH & Co.

    Book  Google Scholar 

Download references

Acknowledgements

The research and development project “KoMPI” (http://kompi.org/) is funded by the German Federal Ministry of Education and Research (BMBF) within the Framework Concept “Research for Tomorrow’s Production” (fund number 02P15A060) and managed by the Project Management Agency Forschungszentrum Karlsruhe, Production and Manufacturing Technologies Division (PTKA-PFT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Glogowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glogowski, P., Lemmerz, K., Hypki, A., Kuhlenkötter, B. (2018). ROS-Based Robot Simulation in Human-Robot Collaboration. In: Karafillidis, A., Weidner, R. (eds) Developing Support Technologies. Biosystems & Biorobotics, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-01836-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01836-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01835-1

  • Online ISBN: 978-3-030-01836-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics