Abstract
Simulation of musculoskeletal models is getting more and more attention in gait analysis and surgical planning procedures. However, there are plenty other applications, where these can be used to facilitate better product and process designs. Musculoskeletal models offer the possibility to investigate and design human-technology interactions. In contrast to most conventional, empirically-based methods and tools used for workplace design, musculoskeletal models enable to catch a glimpse into the human body, revealing the inner strain conditions necessary to counteract the external loads resulting from the task to be performed. This contribution shows approaches to model human-technology interactions for support system design and directions on how to simulate, evaluate, and optimize these by means of musculoskeletal simulation as a virtual human factors tool. Finally, future prospects in musculoskeletal simulation of support devices are given.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, P., Kuo, P.-H., Neptune, R. R., & Deshpande, A. D. (2013). A novel framework for virtual prototyping of rehabilitation exoskeletons. IEEE International Conference on Rehabilitation Robotics. 1–6
Andersen, M. S., Damsgaard, M., & Rasmussen, J. (2009). Kinematic analysis of over-determinate biomechanical systems. Computer Methods in Biomechanics and Biomedical Engineering, 12(4), 371–384.
Crowninshield, R. D., & Brand, R. A. (1981). A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics, 14(11), 793–801.
da Costa, B. R., & Vieira, E. R. (2010). Risk factors for work-related musculoskeletal disorders: A systematic review of recent longitudinal studies. American Journal of Industrial Medicine, 53(3), 285–323.
Damsgaard, M., Rasmussen, J., Christensen, S. T., Surma, E., & de Zee, M. (2006). Analysis of musculoskeletal systems in the AnyBody modeling system. Simulation Modelling Practice and Theory, 14(8), 1100–1111.
Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., et al. (2007). OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering, 54(11), 1940–1950.
Dempsey, P. G., McGorry, R. W., & Maynard, W. S. (2005). A survey of tools and methods used by certified professional ergonomists. Applied Ergonomics, 36(4), 489–503.
Dembia, C. L., Silder, A., Uchida, T. K., Hicks, J. L., & Delp, S. L. (2017). Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads. PLoS ONE, 12(7), 1–25.
German Institute for Standardization DIN EN ISO 9241. (2011). Ergonomics of human-system interaction—Part 210: Human-centred design for interactive systems. Berlin: Beuth.
Ferrati, F., Bortoletto, R., & Pagello, E. (2013). Virtual modelling of a real exoskeleton constrained to a human musculoskeletal model. In N. F. Lepora, A. Mura, H. G. Krapp, & P. F. M. J. Verschure (Eds.), Biomimetic and biohybrid systems (pp. 96–107). Berlin: Springer.
Fox, M. D., Reinbolt, J. A., Õunpuu, S., & Delp, S. L. (2009). Mechanisms of improved knee flexion after rectus femoris transfer surgery. Journal of Biomechanics, 42(5), 614–619.
Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society B: Biological Sciences, 126(843), 136–195.
Jung, Y., Jung, M., Lee, K., & Koo, S. (2014). Ground reaction force estimation using an insole-type pressure mat and joint kinematics during walking. Journal of Biomechanics, 47(11), 2693–2699.
Karafillidis, A., & Weidner, R. (2015). Grundlagen einer Theorie und Klassifikation technischer Unterstützung. In R. Weidner, T. Redlich, & J. P. Wulfsberg (Eds.), Technische Unterstützungssysteme (pp. 66–89). Berlin: Springer.
Krüger, D., & Wartzack, S. (2014). Towards CAD integrated simulation of use under ergonomic aspects. In Proceedings of the International Design Conference—DESIGN 2014 (pp. 2095–2104).
Krüger, D. & Wartzack, S. (2017). A contact model to simulate human-artifact interaction based on force optimization. Implementation and application to the analysis of a training machine. Computer Methods in Biomechanics and Biomedical Engineering, 20(15), 1589–1598.
Miehling, J., Krüger, D., & Wartzack, S. (2013). Simulation in human-centered design—Past, present and tomorrow. In M. Abramovici & R. Stark (Eds.), Smart product engineering (pp. 643–652). Berlin: Springer.
Miehling, J., Geißler, B., & Wartzack, S. (2013). Towards biomechanical digital human modeling of elderly people for simulations in virtual product development. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 57(1), 813–817.
Miehling, J., & Wartzack, S. (2015). Strength mapping algorithm (SMA) for biomechanical human modelling using empirical population data. In Proceedings of the 20th International Conference on Engineering Design—ICED 15 (pp. 115–124).
Miehling, J., Schuhhardt, J., Paulus-Rohmer, F., & Wartzack, S. (2015). Computer aided ergonomics through parametric biomechanical simulation. In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
Rasmussen, J., Damsgaard, M., & Voigt, M. (2001). Muscle recruitment by the min/max criterion—A comparative numerical study. Journal of Biomechanics, 34(3), 409–415.
Rohmert, W. (1984). Das Belastungs-Beanspruchungs-Konzept. Zeitschrift für Arbeitswissenschaft, 38(4), 193–200.
Schlick, C., Bruder, R., & Luczak, H. (2010). Arbeitswissenschaft (3rd ed.). Heidelberg: Springer.
Weidner, R., Kong, N., & Wulfsberg, J. P. (2013). Human hybrid robot. A new concept for supporting manual assembly tasks. Production Engineering, 7(6), 675–684.
Wolf, A., Miehling, J., & Wartzack, S. (2017). Vorgehensweise zur Vorhersage menschlicher Bewegung durch muskuloskelettale Simulation. In Proceedings of the 28th Symposium Design for X—DfX 2017 (pp. 13–24).
Young, A. J., & Ferris, D. P. (2017). State of the art and future directions for lower limb robotic exoskeletons. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(2), 171–182.
Zajac, F. E. (1989). Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering, 17(4), 359–411.
Zajac, F. E. (1993). Muscle coordination of movement. A perspective. Journal of Biomechanics, 26, 109–124.
Zhou, L., & Li, Y. (2016). Design optimization on passive exoskeletons through musculoskeletal model simulation. IEEE International Conference on Robotics and Biomimetics, 1159–1164.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Miehling, J., Wolf, A., Wartzack, S. (2018). Musculoskeletal Simulation and Evaluation of Support System Designs. In: Karafillidis, A., Weidner, R. (eds) Developing Support Technologies. Biosystems & Biorobotics, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-01836-8_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-01836-8_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01835-1
Online ISBN: 978-3-030-01836-8
eBook Packages: Computer ScienceComputer Science (R0)