Musculoskeletal Simulation and Evaluation of Support System Designs | SpringerLink
Skip to main content

Musculoskeletal Simulation and Evaluation of Support System Designs

  • Chapter
  • First Online:
Developing Support Technologies

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 23))

Abstract

Simulation of musculoskeletal models is getting more and more attention in gait analysis and surgical planning procedures. However, there are plenty other applications, where these can be used to facilitate better product and process designs. Musculoskeletal models offer the possibility to investigate and design human-technology interactions. In contrast to most conventional, empirically-based methods and tools used for workplace design, musculoskeletal models enable to catch a glimpse into the human body, revealing the inner strain conditions necessary to counteract the external loads resulting from the task to be performed. This contribution shows approaches to model human-technology interactions for support system design and directions on how to simulate, evaluate, and optimize these by means of musculoskeletal simulation as a virtual human factors tool. Finally, future prospects in musculoskeletal simulation of support devices are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, P., Kuo, P.-H., Neptune, R. R., & Deshpande, A. D. (2013). A novel framework for virtual prototyping of rehabilitation exoskeletons. IEEE International Conference on Rehabilitation Robotics. 1–6

    Google Scholar 

  2. Andersen, M. S., Damsgaard, M., & Rasmussen, J. (2009). Kinematic analysis of over-determinate biomechanical systems. Computer Methods in Biomechanics and Biomedical Engineering, 12(4), 371–384.

    Article  Google Scholar 

  3. Crowninshield, R. D., & Brand, R. A. (1981). A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics, 14(11), 793–801.

    Article  Google Scholar 

  4. da Costa, B. R., & Vieira, E. R. (2010). Risk factors for work-related musculoskeletal disorders: A systematic review of recent longitudinal studies. American Journal of Industrial Medicine, 53(3), 285–323.

    Google Scholar 

  5. Damsgaard, M., Rasmussen, J., Christensen, S. T., Surma, E., & de Zee, M. (2006). Analysis of musculoskeletal systems in the AnyBody modeling system. Simulation Modelling Practice and Theory, 14(8), 1100–1111.

    Article  Google Scholar 

  6. Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., et al. (2007). OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering, 54(11), 1940–1950.

    Article  Google Scholar 

  7. Dempsey, P. G., McGorry, R. W., & Maynard, W. S. (2005). A survey of tools and methods used by certified professional ergonomists. Applied Ergonomics, 36(4), 489–503.

    Article  Google Scholar 

  8. Dembia, C. L., Silder, A., Uchida, T. K., Hicks, J. L., & Delp, S. L. (2017). Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads. PLoS ONE, 12(7), 1–25.

    Article  Google Scholar 

  9. German Institute for Standardization DIN EN ISO 9241. (2011). Ergonomics of human-system interaction—Part 210: Human-centred design for interactive systems. Berlin: Beuth.

    Google Scholar 

  10. Ferrati, F., Bortoletto, R., & Pagello, E. (2013). Virtual modelling of a real exoskeleton constrained to a human musculoskeletal model. In N. F. Lepora, A. Mura, H. G. Krapp, & P. F. M. J. Verschure (Eds.), Biomimetic and biohybrid systems (pp. 96–107). Berlin: Springer.

    Chapter  Google Scholar 

  11. Fox, M. D., Reinbolt, J. A., Õunpuu, S., & Delp, S. L. (2009). Mechanisms of improved knee flexion after rectus femoris transfer surgery. Journal of Biomechanics, 42(5), 614–619.

    Article  Google Scholar 

  12. Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society B: Biological Sciences, 126(843), 136–195.

    Article  Google Scholar 

  13. Jung, Y., Jung, M., Lee, K., & Koo, S. (2014). Ground reaction force estimation using an insole-type pressure mat and joint kinematics during walking. Journal of Biomechanics, 47(11), 2693–2699.

    Article  Google Scholar 

  14. Karafillidis, A., & Weidner, R. (2015). Grundlagen einer Theorie und Klassifikation technischer Unterstützung. In R. Weidner, T. Redlich, & J. P. Wulfsberg (Eds.), Technische Unterstützungssysteme (pp. 66–89). Berlin: Springer.

    Google Scholar 

  15. Krüger, D., & Wartzack, S. (2014). Towards CAD integrated simulation of use under ergonomic aspects. In Proceedings of the International Design Conference—DESIGN 2014 (pp. 2095–2104).

    Google Scholar 

  16. Krüger, D. & Wartzack, S. (2017). A contact model to simulate human-artifact interaction based on force optimization. Implementation and application to the analysis of a training machine. Computer Methods in Biomechanics and Biomedical Engineering, 20(15), 1589–1598.

    Article  Google Scholar 

  17. Miehling, J., Krüger, D., & Wartzack, S. (2013). Simulation in human-centered design—Past, present and tomorrow. In M. Abramovici & R. Stark (Eds.), Smart product engineering (pp. 643–652). Berlin: Springer.

    Chapter  Google Scholar 

  18. Miehling, J., Geißler, B., & Wartzack, S. (2013). Towards biomechanical digital human modeling of elderly people for simulations in virtual product development. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 57(1), 813–817.

    Article  Google Scholar 

  19. Miehling, J., & Wartzack, S. (2015). Strength mapping algorithm (SMA) for biomechanical human modelling using empirical population data. In Proceedings of the 20th International Conference on Engineering Design—ICED 15 (pp. 115–124).

    Google Scholar 

  20. Miehling, J., Schuhhardt, J., Paulus-Rohmer, F., & Wartzack, S. (2015). Computer aided ergonomics through parametric biomechanical simulation. In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.

    Google Scholar 

  21. Rasmussen, J., Damsgaard, M., & Voigt, M. (2001). Muscle recruitment by the min/max criterion—A comparative numerical study. Journal of Biomechanics, 34(3), 409–415.

    Article  Google Scholar 

  22. Rohmert, W. (1984). Das Belastungs-Beanspruchungs-Konzept. Zeitschrift für Arbeitswissenschaft, 38(4), 193–200.

    Google Scholar 

  23. Schlick, C., Bruder, R., & Luczak, H. (2010). Arbeitswissenschaft (3rd ed.). Heidelberg: Springer.

    Book  Google Scholar 

  24. Weidner, R., Kong, N., & Wulfsberg, J. P. (2013). Human hybrid robot. A new concept for supporting manual assembly tasks. Production Engineering, 7(6), 675–684.

    Article  Google Scholar 

  25. Wolf, A., Miehling, J., & Wartzack, S. (2017). Vorgehensweise zur Vorhersage menschlicher Bewegung durch muskuloskelettale Simulation. In Proceedings of the 28th Symposium Design for X—DfX 2017 (pp. 13–24).

    Google Scholar 

  26. Young, A. J., & Ferris, D. P. (2017). State of the art and future directions for lower limb robotic exoskeletons. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(2), 171–182.

    Article  Google Scholar 

  27. Zajac, F. E. (1989). Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering, 17(4), 359–411.

    Google Scholar 

  28. Zajac, F. E. (1993). Muscle coordination of movement. A perspective. Journal of Biomechanics, 26, 109–124.

    Article  Google Scholar 

  29. Zhou, L., & Li, Y. (2016). Design optimization on passive exoskeletons through musculoskeletal model simulation. IEEE International Conference on Robotics and Biomimetics, 1159–1164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Miehling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miehling, J., Wolf, A., Wartzack, S. (2018). Musculoskeletal Simulation and Evaluation of Support System Designs. In: Karafillidis, A., Weidner, R. (eds) Developing Support Technologies. Biosystems & Biorobotics, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-01836-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01836-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01835-1

  • Online ISBN: 978-3-030-01836-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics