Soft Robotics. Bio-inspired Antagonistic Stiffening | SpringerLink
Skip to main content

Soft Robotics. Bio-inspired Antagonistic Stiffening

  • Chapter
  • First Online:
Developing Support Technologies

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 23))

  • 1125 Accesses

Abstract

Soft robotic structures might play a major role in the 4th industrial revolution. Researchers have demonstrated advantages of soft robotics over traditional robots made of rigid links and joints in several application areas including manufacturing, healthcare, and surgical interventions. However, soft robots have limited ability to exert larger forces and change their stiffness on demand over a wide range. Stiffness can be achieved as a result of the equilibrium of an active and a passive reaction force or of two active forces antagonistically collaborating. This paper presents a novel design paradigm for a fabric-based Variable Stiffness System including potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arezzo, A., Mintz, Y., Allaix, M. E., Arolfo, S., Bonino, M., Gerboni, G., et al. (2016). Total mesorectal excision using a soft and flexible robotic arm: A feasibility study in cadaver models. Surgical Endoscopy, 31(1), 264273.

    Google Scholar 

  2. Bauer, S., Bauer-Gogonea, S., Graz, I., Kaltenbrunner, M., Keplinger, C., & Schwoediauer, R. (2014). 25th anniversary article: A soft future: From robots and sensor skin to energy harvesters. Advanced Materials, 26(1), 149162.

    Article  Google Scholar 

  3. Burgner-Kahrs, J., Rucker, D. C., & Choset, H. (2015). Continuum robots for medical applications: A survey. IEEE Transactions on Robotics, 31(6), 1261–1280.

    Article  Google Scholar 

  4. Cianchetti, M., Arienti, A., Follador, M., Mazzolai, B., Dario, P., & Laschi, C. (2011). Design concept and validation of a robotic arm inspired by the octopus. Materials Science and Engineering C, 31, 1230–1239.

    Article  Google Scholar 

  5. Crespi, A., Badertscher, A., Guignard, A., & Ijspeert, A. J. (2005). AmphiBot I: An amphibious snake-like robot. Robotics and Autonomous Systems, 50(4), 163–175.

    Article  Google Scholar 

  6. Faragasso, A., Stilli, A., Bimbo, J., Noh, Y., Liu, H., et al. (2014). Endoscopic add-on stiffness probe for real-time soft surface characterisation in MIS. In: International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 6517–6520).

    Google Scholar 

  7. Hawkes, E. W., Blumenschein, L. H., Greer, J. D., & Okamura, A. M. (2017). A soft robot that navigates its environment through growth. Science Robotics, 2(8).

    Article  Google Scholar 

  8. Horvath, M. A., Wamala, I., Rytkin, E., Doyle, E., Payne, C. J., Thalhofer, T., et al. (2017). An intracardiac soft robotic device for augmentation of blood ejection from the failing right ventricle. Annals of Biomedical Engineering, 45(9), 2222–2233.

    Article  Google Scholar 

  9. Kamegawa, T., Yarnasaki, T., Igarashi, H., & Matsuno, F. (2004). Development of the snake-like rescue robot kohga. In IEEE International Conference on Robotics and Automation (pp. 5081–5086).

    Google Scholar 

  10. Lipson, H. (2014). Challenges and opportunities for design, simulation, and fabrication of soft robots. Soft Robotics, 1(1), 21–27.

    Article  Google Scholar 

  11. Maghooa, F., Stilli, A., Noh, Y., Althoefer, K., & Wurdemann, H. A. (2015). Tendon and pressure actuation for a bio-inspired manipulator based on an antagonistic principle. In IEEE International Conference on Robotics and Automation (pp. 2556–2561).

    Google Scholar 

  12. Manti, M., Cacucciolo, V., & Cianchetti, M. (2016). Stiffening in soft robotics: A review of the state of the art. IEEE Robotics and Automation Magazine, 23(3), 93–106.

    Article  Google Scholar 

  13. Pfeifer, R., Marques, H. G., & Iida, F. (2013). Soft robotics: The next generation of intelligent machines. In International Joint Conference on Artificial Intelligence (pp. 5–11).

    Google Scholar 

  14. Robinson, G., & Davies, J. B. C. (1999). Continuum robots—A state of the art. In IEEE International Conference on Robotics and Automation (p. 4).

    Google Scholar 

  15. Rossiter, J., & Hauser, H. (2016). Soft robotics the next industrial revolution. IEEE Robotics and Automation Magazine, 23, 17–20.

    Article  Google Scholar 

  16. Sareh, S., Jiang, A., Faragasso, A., Nanayakkara, T., Dasgupta, P., Seneviratne, L., Wurdemann, H., et al. (2014). MR-compatible bio-inspired tactile sensor sleeve for surgical soft manipulators. In IEEE International Conference on Robotics and Automation (pp. 1454–1459).

    Google Scholar 

  17. Shiva, A., Stilli, A., Noh, Y., Faragasso, A., Althoefer, K., & Wurdemann, H. A. (2016). Tendon-based stiffening for a pneumatically actuated soft manipulator. IEEE Robotics and Automation Letters, 1(2), 632–637.

    Article  Google Scholar 

  18. Stilli, A., Wurdemann, H. A., & Althoefer, K. (2014). Shrinkable, stiffness-controllable soft manipulator based on a bio-inspired antagonistic actuation principle. In IEEE International Conference on Robotics and Automation (pp. 2476–2481).

    Google Scholar 

  19. Stilli, A., Wurdemann, H. A., & Althoefer, K. (2016). A novel concept for safe. Stiffness-Controllable Robot Links, Soft Robot, 4(1), 16–22.

    Google Scholar 

  20. Stilli, A., Grattarola, L., Feldmann, H., Wurdemann, H. A., & Althoefer, K. (2017). Variable Stiffness Links VSL—Toward inherently safe robotic manipulators. In IEEE International Conference on Robotics and Automation (pp. 4971–4976).

    Google Scholar 

  21. Wurdemann, H. A., Sareh, S., Shafti, A., Noh, Y., Faragasso, A., Chathuranga, D. S. (2015). Embedded electro-conductive yarn for shape sensing of soft robotic manipulators. In International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 8026–8029).

    Google Scholar 

  22. Wurdemann, H., Stilli, A., & Althoefer, K. (2015). Lecture notes in computer science: An antagonistic actuation technique for simultaneous stiffness and position control. In International Conference on Intelligent Robotics and Applications (pp. 164–174).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge A. Wurdemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stilli, A., Althoefer, K., Wurdemann, H.A. (2018). Soft Robotics. Bio-inspired Antagonistic Stiffening. In: Karafillidis, A., Weidner, R. (eds) Developing Support Technologies. Biosystems & Biorobotics, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-01836-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01836-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01835-1

  • Online ISBN: 978-3-030-01836-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics