Mobile Augmented Reality System for Craftsmen | SpringerLink
Skip to main content

Mobile Augmented Reality System for Craftsmen

  • Chapter
  • First Online:
Developing Support Technologies

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 23))

  • 870 Accesses

Abstract

A mobile augmented reality system for visual guidance of craftsmen is presented. The integrated pico-projector displays constructional information within the workers field of vision. It displays borehole locations in correct world pose and helps workers aligning a drill perpendicular to a wall. To create assisting images using coordinate transformation, rtab-SLAM and camera-projector calibration determine the relative pose between the environment and the projector. To evaluate the systems usability, a user study was performed on drill aligning. It proves that the system increases task performance speed, improving accuracy in horizontal movements but indifferent in vertical movements compared to unassisted performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Azuma, R. (1997). A Survey of Augmented Reality. Presence: Teleoperators and Virtual Environments, 6, 355–385.

    Article  Google Scholar 

  2. Bringeland, S., Heine, T., Hoffmann, M., Stein, T., & Deml, B. (2016). Ergonomische Evaluation eines Handwerker-Kraftassistenzsystems, Arbeit in komplexen Systemen—Digital, vernetzt, human?!. Tagungsband 62. Frühjahrskongress der Gesellschaft für Arbeitswissenschaft. GFA Press, Dortmund.

    Google Scholar 

  3. Doshi, A., Smith, R., Thomas, B. H., & Bouras, C. (2016). Use of projector based augmented reality to improve manual spot-welding precision and accuracy for automotive manufacturing. Advanced Manufacturing Technology, 1–15.

    Google Scholar 

  4. Falcao, G., Hurtos, N., & Massich, J. (2008). Plane-based calibration of a projector-camera system. VIBOT Master, 1–12.

    Google Scholar 

  5. Frese, U., Wagner, R., & Röfer, T. (2010). A SLAM Overview from a User’s Perspective. KI - Künstliche Intelligenz, 24, 191–198, 2010.

    Article  Google Scholar 

  6. Gavaghan, K., Anderegg, S., Peterhans, M., Oliveira-Santos, T., & Weber, S. (2012). Augmented reality image overlay projection for image guided open liver ablation of metastatic liver cancer. Lecture Notes in Computer Science: Augmented Environments for Computer-Assisted Interventions 7264 (pp. 36–46). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  7. Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task load index). Results of empirical and theoretical research. Human mental workload (Advances in psychology) (Vol. 52, pp. 139–183). Elsevier.

    Google Scholar 

  8. Kobler, J.-P., Hussong, A., & Ortmaier, T. (2010). Mini-Projektor basierte Augmented Reality für medizinische Anwendungen. Tagungsband der 9. Jahrestagung der Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie e.V. (CURAC), (pp. 115–118).

    Google Scholar 

  9. Van Krevelen, D., & Poelman, R. (2010). A Survey of Augmented Reality Technologies. Applications and Limitations. The International Journal of Virtual Reality, 9, 1–20.

    Google Scholar 

  10. Labbé, M., & Michaud, F. (2014). Online global loop closure detection for large-scale multi-session graph-based SLAM. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, (pp. 2661–2666).

    Google Scholar 

  11. Laugwitz, B., Held, T., & Schrepp, M. (2008). Construction and evaluation of a user experience questionnaire. In A. Holzinger (Ed.), Proceedings of USAB’08 (pp. 63–76). Berlin, Heidelberg, Springer.

    Google Scholar 

  12. Ornkloo, H., & von Hofsten, C. (2007). Fitting objects into holes. On the development of spatial cognition skills. Developmental psychology, 43(2), 404–416.

    Article  Google Scholar 

  13. Schrepp, M., Hinderks, A., & Thomaschewski, J. (2014). Applying the user experience questionnaire (UEQ) in different evaluation scenarios. In A. Marcus (Ed.), Design, user experience, and usability. Theories, methods, and tools for designing the user experience. DUXU. Lecture Notes in Computer Science 8517. Cham: Springer.

    Chapter  Google Scholar 

  14. Wiedemeyer, T. (2015) IAI Kinect2. https://github.com/code-iai/iai_kinect2. Institute for Artificial Intelligence, University Bremen. Accessed June 12, 2015.

  15. Wu, J., Wang, M., Liu, K., Hu, M., & Lee, P. (2014) Real-time advanced spinal surgery via visible patient model and augmented reality system. Computer Methods and Programs in Biomedicine, 113, 869–881.

    Article  Google Scholar 

Download references

Acknowledgements

This research received funding by the Federal Ministry of Education and Research of Germany (BMBF 16SV6175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Nuelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nuelle, K., Bringeland, S., Tappe, S., Deml, B., Ortmaier, T. (2018). Mobile Augmented Reality System for Craftsmen. In: Karafillidis, A., Weidner, R. (eds) Developing Support Technologies. Biosystems & Biorobotics, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-01836-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01836-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01835-1

  • Online ISBN: 978-3-030-01836-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics