Brain-Machine Interface for Mechanical Ventilation Using Respiratory-Related Evoked Potential | SpringerLink
Skip to main content

Brain-Machine Interface for Mechanical Ventilation Using Respiratory-Related Evoked Potential

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Abstract

The correct ventilation for patients in intensive care units plays a critical role for the prognostic and the recovery during the stay in the hospital. Desynchronization between the ventilator and the patient is an important source of stress, emphasized by the lack of communication due to intubation or loss of consciousness. This contribution proposes a novel approach based on electroencephalographic (EEG) activity to detect breathing effort. Relying both on recent neuroscience finding on respiratory-related evoked potential and on latest development of information geometry, the proposed approach elaborates on Riemannian distances between EEG covariance matrices to differentiate among different respiratory loads. The results demonstrate that this approach outperform existing state-of-the-art methods quantitatively, in terms of mean accuracy, and qualitatively, being able to predict level of breathing discomfort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barachant, A., Bonnet, S., Congedo, M., Jutten, C.: Multiclass brain-computer interface classification by Riemannian geometry. IEEE Trans. Biomed. Eng. 59(4), 920–928 (2012)

    Article  Google Scholar 

  2. Blanch, L., et al.: Validation of the better care® system to detect ineffective efforts during expiration in mechanically ventilated patients: a pilot study. Intensiv. Care Med. 38(5), 772–780 (2012)

    Article  Google Scholar 

  3. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Muller, K.R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25(1), 41–56 (2008)

    Article  Google Scholar 

  4. Congedo, M., Barachant, A., Bhatia, R.: Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review. Brain-Comput. Interfaces 4, 1–20 (2017)

    Article  Google Scholar 

  5. Congedo, M., Barachant, A., Andreev, A.: A new generation of brain-computer interface based on Riemannian geometry. arXiv preprint arXiv:1310.8115 (2013)

  6. Dres, M., Rittayamai, N., Brochard, L.: Monitoring patient-ventilator asynchrony. Curr. Opin. Crit. Care 22(3), 246–253 (2016)

    Article  Google Scholar 

  7. Dubois, M., et al.: Neurophysiological evidence for a cortical contribution to the wakefulness-related drive to breathe explaining hypocapnia-resistant ventilation in humans. J. Neurosci. 36(41), 10673–10682 (2016)

    Article  Google Scholar 

  8. Esteban, A., et al.: How is mechanical ventilation employed in the intensive care unit? An international utilization review. Am. J. Respir. Crit. Care Med. 161(5), 1450–1458 (2000)

    Article  Google Scholar 

  9. Fatourechi, M., Ward, R.K., Mason, S.G., Huggins, J., Schlögl, A., Birch, G.E.: Comparison of evaluation metrics in classification applications with imbalanced datasets. In: International Conference on Machine Learning and Applications (ICMLA), pp. 777–782. IEEE (2008)

    Google Scholar 

  10. Hudson, A.L., et al.: Electroencephalographic detection of respiratory-related cortical activity in humans: from event-related approaches to continuous connectivity evaluation. J. Neurophysiol. 115(4), 2214–2223 (2016)

    Article  Google Scholar 

  11. Kalunga, E.K., Chevallier, S., Barthélemy, Q., Djouani, K., Monacelli, E., Hamam, Y.: Online SSVEP-based BCI using riemannian geometry. Neurocomputing 191, 55–68 (2016)

    Article  Google Scholar 

  12. Kalunga, E.K., Chevallier, S., Barthélemy, Q., Djouani, K., Hamam, Y., Monacelli, E.: From euclidean to riemannian means: information geometry for SSVEP classification. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2015. LNCS, vol. 9389, pp. 595–604. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25040-3_64

    Chapter  MATH  Google Scholar 

  13. Knafelc, M., Davenport, P.W.: Relationship between magnitude estimation of resistive loads, inspiratory pressures, and the rrep p1 peak. J. Appl. Physiol. 87(2), 516–522 (1999)

    Article  Google Scholar 

  14. Lotte, F., et al.: A review of classification algorithms for eeg-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018). http://stacks.iop.org/1741-2552/15/i=3/a=031005

    Article  Google Scholar 

  15. Mayaud, L., et al.: Brain-computer interface for the communication of acute patients: a feasibility study and a randomized controlled trial comparing performance with healthy participants and a traditional assistive device. Brain-Comput. Interfaces 3(4), 197–215 (2016)

    Article  Google Scholar 

  16. Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26(3), 735–747 (2005)

    Article  MathSciNet  Google Scholar 

  17. Navarro-Sune, X., et al.: Riemannian geometry applied to detection of respiratory states from EEG signals: the basis for a brain-ventilator interface. IEEE Trans. Biomed. Eng. 64(5), 1138–1148 (2017)

    Article  Google Scholar 

  18. Piquilloud, L., et al.: Neurally adjusted ventilatory assist (NAVA) improves patient-ventilator interaction during non-invasive ventilation delivered by face mask. Intensiv. Care Med. 38(10), 1624–1631 (2012)

    Article  Google Scholar 

  19. Reuter, B., Linke, D., Kurthen, M.: Cognitive processes in unconscious patients? A brain mapping study of the p300 potential. Archiv fur Psychologie 141(3), 155–173 (1989)

    Google Scholar 

  20. Rivet, B., Souloumiac, A., Attina, V., Gibert, G.: xDAWN algorithm to enhance evoked potentials: application to brain-computer interface. IEEE Trans. Biomed. Eng. 56(8), 2035–2043 (2009)

    Article  Google Scholar 

  21. Rotondi, A.J., et al.: Patients’ recollections of stressful experiences while receiving prolonged mechanical ventilation in an intensive care unit. Critical Care Med. 30(4), 746–752 (2002)

    Article  Google Scholar 

  22. Schäfer, J., Strimmer, K.: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4(1) (2005)

    Google Scholar 

  23. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  24. Wolpaw, J., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)

    Article  Google Scholar 

  25. Yger, F., Berar, M., Lotte, F.: Riemannian approaches in brain-computer interfaces: a review. IEEE Trans. Neural. Syst. Rehabil. Eng. 25(10), 1753–1762 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Chevallier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chevallier, S. et al. (2018). Brain-Machine Interface for Mechanical Ventilation Using Respiratory-Related Evoked Potential. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11141. Springer, Cham. https://doi.org/10.1007/978-3-030-01424-7_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01424-7_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01423-0

  • Online ISBN: 978-3-030-01424-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics