An Overview of Frank-Wolfe Optimization for Stochasticity Constrained Interpretable Matrix and Tensor Factorization | SpringerLink
Skip to main content

An Overview of Frank-Wolfe Optimization for Stochasticity Constrained Interpretable Matrix and Tensor Factorization

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11140))

Included in the following conference series:

Abstract

In this paper we give an overview about utilizing Frank Wolfe optimization to find interpretable constrained matrix and tensor factorizations. We will particularly concentrate on imposing stochasticity constraints and show how factors of Archetypal Analysis as well as Decomposition Into Directed Components can be found using Frank Wolfe optimization to respectively decompose bipartite matrices and asymmetric similarity tensors. We will show how the derived algorithms perform by presenting case studies from behavioral profiling in digital games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bader, B., Harshman, R., Kolda, T.: Temporal analysis of semantic graphs using ASALSAN. In: Proceedings of IEEE ICDM (2007)

    Google Scholar 

  2. Bauckhage, C., Kersting, K., Hoppe, F., Thurau, C.: Archetypal analysis as an Autoencoder. In: Proceedings of Workshop New Challenges in Neural Computation (2015)

    Google Scholar 

  3. Bauckhage, C.: A neural network implementation of Frank-Wolfe optimization. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10613, pp. 219–226. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68600-4_26

    Chapter  Google Scholar 

  4. Chew, P.A., Bader, B.W., Rozovskaya, A.: Using DEDICOM for completely unsupervised part-of-speech tagging. In: Proceedings of Workshop on Unsupervised and Minimally Supervised Learning of Lexical Semantics (2009)

    Google Scholar 

  5. Cutler, A., Breiman, L.: Archetypal analysis. Technometrics 36(4), 338–347 (1994)

    Article  MathSciNet  Google Scholar 

  6. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Nav. Res. Logist. Q. 3(1–2), 95–110 (1956)

    Article  MathSciNet  Google Scholar 

  7. Harshman, R.: Models for analysis of asymmetrical relationships among N objects or stimuli. In: Proceedings of Joint Meeting of the Psychometric Society and the Society for Mathematical Psychology (1978)

    Google Scholar 

  8. Jaggi, M.: Revisiting Frank-Wolfe: projection-free sparse convex optimization. In: Proceedings of ACM ICML (2013)

    Google Scholar 

  9. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  10. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  11. Morup, M., Hansen, L.: Archetypal analysis for machine learning and data mining. Neurocomputing 80, 54–63 (2012)

    Article  Google Scholar 

  12. Rattinger, A., Wallner, G., Drachen, A., Pirker, J., Sifa, R.: Integrating and inspecting combined behavioral profiling and social network models in Destiny. In: Wallner, G., Kriglstein, S., Hlavacs, H., Malaka, R., Lugmayr, A., Yang, H.-S. (eds.) ICEC 2016. LNCS, vol. 9926, pp. 77–89. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46100-7_7

    Chapter  Google Scholar 

  13. Sifa, R., Bauckhage, C.: Online \(k\)-maxoids clustering. In: Proceedings of IEEE DSAA (2017)

    Google Scholar 

  14. Sifa, R., Ojeda, C., Cvejoski, K., Bauckhage, C.: Interpretable matrix factorization with stochasticity constrained nonnegative DEDICOM. In: Proceedings of KDML-LWDA (2017)

    Google Scholar 

  15. Sifa, R., Srikanth, S., Drachen, A., Ojeda, C., Bauckhage, C.: Predicting retention in sandbox games with tensor factorization-based representation learning. In: Proceedings of IEEE CIG (2016)

    Google Scholar 

  16. Sifa, R., Bauckhage, C., Drachen, A.: Archetypal game recommender systems. In: Proceedings of KDML-LWA (2014)

    Google Scholar 

  17. Takács, G., Pilászy, I., Németh, B., Tikk, D.: Scalable collaborative filtering approaches for large recommender systems. JMLR 10, 623–656 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafet Sifa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sifa, R. (2018). An Overview of Frank-Wolfe Optimization for Stochasticity Constrained Interpretable Matrix and Tensor Factorization. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11140. Springer, Cham. https://doi.org/10.1007/978-3-030-01421-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01421-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01420-9

  • Online ISBN: 978-3-030-01421-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics