Abstract
When case-based recommender systems use preference-based feedback, we can learn user preferences by using the trade-off relations between the preferred product and the other products in the given domain. In this work, we propose a representation for trade-offs and motivate several mechanisms by which the identified trade-offs can be used in the process of recommendation. We empirically demonstrate the effectiveness of the proposed approaches in three recommendation domains.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We use the terms cases and products; case base and product domain; features and attributes interchangeably.
References
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)
Smyth, B., McClave, P.: Similarity vs. Diversity. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 347–361. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44593-5_25
Ginty, L.M., Smyth, B.: Evaluating preference-based feedback in recommender systems. In: O’Neill, M., Sutcliffe, R.F.E., Ryan, C., Eaton, M., Griffith, N.J.L. (eds.) AICS 2002. LNCS (LNAI), vol. 2464, pp. 209–214. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45750-X_28
Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Trade-offs. Cambridge University Press, Cambridge (1993)
Ginty, L.M., Smyth, B.: Comparison-based recommendation. In: Craw, S., Preece, A. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 575–589. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46119-1_42
McGinty, L., Smyth, B.: On the role of diversity in conversational recommender systems. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS (LNAI), vol. 2689, pp. 276–290. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45006-8_23
McSherry, D.: Similarity and compromise. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS (LNAI), vol. 2689, pp. 291–305. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45006-8_24
McSherry, D.: Balancing user satisfaction and cognitive load in coverage-optimised retrieval. Knowledge-Based Systems 17(2–4), 113–119 (2004)
Mouli, S.C., Chakraborti, S.: Making the most of preference feedback by modeling feature dependencies. In: Proceedings of the 9th ACM Conference on Recommender Systems (2015)
R. Burke, K.H., Young, B.: Knowledge-based navigation of complex information spaces. In: Proceedings of the 13th National Conference on Artificial Intelligence, pp. 462–468 (1996)
Sekar, A., Chakraborti, S.: Towards bridging the gap between manufacturer and users to facilitate better recommendation. Florida Artificial Intelligence Research Society Conference (2018). https://aaai.org/ocs/index.php/FLAIRS/FLAIRS18/paper/view/17670
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Sekar, A., Ganesan, D., Chakraborti, S. (2018). Why Did Naethan Pick Android over Apple? Exploiting Trade-offs in Learning User Preferences. In: Cox, M., Funk, P., Begum, S. (eds) Case-Based Reasoning Research and Development. ICCBR 2018. Lecture Notes in Computer Science(), vol 11156. Springer, Cham. https://doi.org/10.1007/978-3-030-01081-2_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-01081-2_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01080-5
Online ISBN: 978-3-030-01081-2
eBook Packages: Computer ScienceComputer Science (R0)