Harnessing Hundreds of Millions of Cases: Case-Based Prediction at Industrial Scale | SpringerLink
Skip to main content

Harnessing Hundreds of Millions of Cases: Case-Based Prediction at Industrial Scale

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11156))

Included in the following conference series:

Abstract

Building predictive models is central to many big data applications. However, model building is computationally costly at scale. An appealing alternative is bypassing model building by applying case-based prediction to reason directly from data. However, to our knowledge case-based prediction still has not been applied at true industrial scale. In previous work we introduced a knowledge-light/data intensive approach to case-based prediction, using ensembles of automatically-generated adaptations. We developed foundational scaleup methods, using Locality Sensitive Hashing (LSH) for fast approximate nearest neighbor retrieval of both cases and adaptation rules, and tested them for millions of cases. This paper presents research on extending these methods to address the practical challenges raised by case bases of hundreds of millions of cases for a real world industrial e-commerce application. Handling this application required addressing how to keep LSH practical for skewed data; the resulting efficiency gains in turn enabled applying an adaptation generation strategy that previously was computationally infeasible. Experimental results show that our CBR approach achieves accuracy comparable to or better than state of the art machine learning methods commonly applied, while avoiding their model-building cost. This supports the opportunity to harness CBR for industrial scale prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.kaggle.com/zurfer/rtb/data.

References

  1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K. (ed.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  2. Beaver, I., Dumoulin, J.: Applying mapreduce to learning user preferences in near real-time. In: Delany, S.J., Ontañón, S. (eds.) ICCBR 2013. LNCS, vol. 7969, pp. 15–28. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39056-2_2

    Chapter  Google Scholar 

  3. Bi, Z., Faloutsos, C., Korn, F.: The “DGX” distribution for mining massive, skewed data. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2001, pp. 17–26. ACM, New York (2001)

    Google Scholar 

  4. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G. (eds.) Proceedings of COMPSTAT 2010, pp. 177–186. Physica-Verlag HD, Heidelberg (2010). https://doi.org/10.1007/978-3-7908-2604-3_16

    Chapter  Google Scholar 

  5. Chawla, N.V.: Data mining for imbalanced datasets: an overview. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 875–886. Springer, Boston (2010). https://doi.org/10.1007/0-387-25465-X_40

  6. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual Symposium on Computational Geometry, SCG 2004, pp. 253–262. ACM, New York (2004)

    Google Scholar 

  7. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. VLDB 99, 518–529 (1999)

    Google Scholar 

  8. Hanney, K., Keane, M.T.: Learning adaptation rules from a case-base. In: Smith, I., Faltings, B. (eds.) EWCBR 1996. LNCS, vol. 1168, pp. 179–192. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0020610

    Chapter  Google Scholar 

  9. Houeland, T.G., Aamodt, A.: The utility problem for lazy learners - towards a non-eager approach. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS (LNAI), vol. 6176, pp. 141–155. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14274-1_12

    Chapter  Google Scholar 

  10. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC 1998, pp. 604–613. ACM, New York (1998)

    Google Scholar 

  11. Jalali, V., Leake, D.: CBR meets big data: a case study of large-scale adaptation rule generation. In: Hüllermeier, E., Minor, M. (eds.) ICCBR 2015. LNCS, vol. 9343, pp. 181–196. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24586-7_13

    Chapter  Google Scholar 

  12. Jalali, V., Leake, D.: Scaling up ensemble of adaptations for classification by approximate nearest neighbor retrieval. In: Aha, D.W., Lieber, J. (eds.) ICCBR 2017. LNCS (LNAI), vol. 10339, pp. 154–169. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61030-6_11

    Chapter  Google Scholar 

  13. Jalali, V., Leake, D., Forouzandehmehr, N.: Ensemble of adaptations for classification: learning adaptation rules for categorical features. In: Goel, A., Díaz-Agudo, M.B., Roth-Berghofer, T. (eds.) ICCBR 2016. LNCS, vol. 9969, pp. 186–202. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47096-2_13

    Chapter  Google Scholar 

  14. Jalali, V., Leake, D.: A context-aware approach to selecting adaptations for case-based reasoning. In: Brézillon, P., Blackburn, P., Dapoigny, R. (eds.) CONTEXT 2013. LNCS, vol. 8175, pp. 101–114. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40972-1_8

    Chapter  Google Scholar 

  15. Jalali, V., Leake, D.: Extending case adaptation with automatically-generated ensembles of adaptation rules. In: Delany, S.J., Ontañón, S. (eds.) ICCBR 2013. LNCS, vol. 7969, pp. 188–202. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39056-2_14

    Chapter  Google Scholar 

  16. Jalali, V., Leake, D.: Adaptation-guided case base maintenance. In: Proceedings of the Twenty-Eighth Conference on Artificial Intelligence, pp. 1875–1881. AAAI Press (2014)

    Google Scholar 

  17. Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image search. In: IEEE International Conference on Computer Vision ICCV (2009)

    Google Scholar 

  18. Leake, D., Smyth, B., Wilson, D., Yang, Q. (eds.): Maintaining Case-Based Reasoning Systems. Blackwell, Malden (2001). Special issue of Computational Intelligence 17(2) (2001)

    Google Scholar 

  19. Leetaru, K., Schrodt, P.A.: GDELT: global data on events, location, and tone. ISA Annual Convention (2013)

    Google Scholar 

  20. Lin, Y.B., Ping, X.O., Ho, T.W., Lai, F.: Processing and analysis of imbalanced liver cancer patient data by case-based reasoning. In: The 7th 2014 Biomedical Engineering International Conference, pp. 1–5, November 2014

    Google Scholar 

  21. Malof, J., Mazurowski, M., Tourassi, G.: The effect of class imbalance on case selection for case-based classifiers: an empirical study in the context of medical decision support. Neural Netw. 25, 141–145 (2012)

    Article  Google Scholar 

  22. Meng, X., et al.: MLlib: machine learning in apache spark. CoRR abs/1505.06807 (2015)

    Google Scholar 

  23. Mühleisen, H., Bizer, C.: Web data commons - extracting structured data from two large web corpora. In: Bizer, C., Heath, T., Berners-Lee, T., Hausenblas, M. (eds.) WWW 2012 Workshop on Linked Data on the Web, Lyon, France, 16 April 2012. CEUR Workshop Proceedings, vol. 937. CEUR-WS.org (2012)

    Google Scholar 

  24. Ontañón, S., Plaza, E.: Collaborative case retention strategies for CBR agents. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 392–406. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45006-8_31

    Chapter  MATH  Google Scholar 

  25. Palmer, C.R., Faloutsos, C.: Density biased sampling: an improved method for data mining and clustering. SIGMOD Rec. 29(2), 82–92 (2000)

    Article  Google Scholar 

  26. Rojas, J.A.R., Kery, M.B., Rosenthal, S., Dey, A.: Sampling techniques to improve big data exploration. In: 2017 IEEE 7th Symposium on Large Data Analysis and Visualization (LDAV), pp. 26–35, October 2017

    Google Scholar 

  27. Salamó, M., López-Sánchez, M.: Adaptive case-based reasoning using retention and forgetting strategies. Knowl. Based Syst. 24(2), 230–247 (2011)

    Article  Google Scholar 

  28. Smyth, B., Cunningham, P.: The utility problem analysed. In: Smith, I., Faltings, B. (eds.) EWCBR 1996. LNCS, vol. 1168, pp. 392–399. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0020625

    Chapter  Google Scholar 

  29. Smyth, B., Keane, M.: Remembering to forget: a competence-preserving case deletion policy for case-based reasoning systems. In: Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, pp. 377–382. Morgan Kaufmann, San Mateo (1995)

    Google Scholar 

  30. Smyt, B., McKenna, E.: Footprint-based retrieval. In: Althoff, K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS, vol. 1650, pp. 343–357. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48508-2_25

    Chapter  Google Scholar 

  31. Upadhyaya, S.R.: Parallel approaches to machine learning a comprehensive survey. J. Parallel Distrib. Comput. 73(3), 284–292 (2013). Models and Algorithms for High-Performance Distributed Data Mining

    Google Scholar 

  32. Zhu, J., Yang, Q.: Remembering to add: competence-preserving case-addition policies for case base maintenance. In: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, pp. 234–241. Morgan Kaufmann (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Jalali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jalali, V., Leake, D. (2018). Harnessing Hundreds of Millions of Cases: Case-Based Prediction at Industrial Scale. In: Cox, M., Funk, P., Begum, S. (eds) Case-Based Reasoning Research and Development. ICCBR 2018. Lecture Notes in Computer Science(), vol 11156. Springer, Cham. https://doi.org/10.1007/978-3-030-01081-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01081-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01080-5

  • Online ISBN: 978-3-030-01081-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics