On the Use of Neuroevolutive Methods as Support Tools for Diagnosing Appendicitis and Tuberculosis | SpringerLink
Skip to main content

On the Use of Neuroevolutive Methods as Support Tools for Diagnosing Appendicitis and Tuberculosis

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2018)

Abstract

Artificial neural networks are being used in diagnosis support systems to detect different kind of diseases. As the design of multilayer perceptron is an open question, the present work shows a comparison between a traditional empirical way and neuroevolution method to find the best architecture to solve the disease detection problem. Tuberculosis and appendicitis databases were employed to test both proposals. Results show that neuroevolution offers a good alternative for the tuberculosis problem but there is lacks of performance in the appendicitis one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kalantari, A., Kamsin, A., Shamshirband, S., Gani, A., Alinejad-Rokny, H., Chronopoulos, A.T.: Computational intelligence approaches for classification of medical data: state-of-the-art, future challenges and research directions. Neurocomputing 276, 2–22 (2017)

    Article  Google Scholar 

  2. Amato, F., López, A., Peña-Méndez, E.M., Vavnhara, P., Hampl, A., Havel, J.: Artificial neural networks in medical diagnosis (2013)

    Google Scholar 

  3. Amato, F., González-Hernández, J.L., Havel, J.: Artificial neural networks combined with experimental design: a soft approach for chemical kinetics. Talanta 93, 72–78 (2012)

    Article  Google Scholar 

  4. Seera, M., Lim, C.P.: A hybrid intelligent system for medical data classification. Expert Syst. Appl. 41, 2239–2249 (2014)

    Article  Google Scholar 

  5. Prabhudesai, S.G., Gould, S., Rekhraj, S., Tekkis, P.P., Glazer, G., Ziprin, P.: Artificial neural networks: useful aid in diagnosing acute appendicitis. World J. Surg. 32, 305–309 (2008)

    Article  Google Scholar 

  6. Huang, R., Lee, S., Lai, C., Hsiao, Y., Ting, H.: Acute effects of obstructive sleep apnea on autonomic nervous system, arterial stiffness and heart rate in newly diagnosed untreated patients. Sleep Med. 14, e27 (2013)

    Article  Google Scholar 

  7. Ting, H.-W., Wu, J.-T., Chan, C.-L., Lin, S.-L., Chen, M.-H.: Decision model for acute appendicitis treatment with decision tree technology - a modification of the alvarado scoring system. J. Chin. Med. Assoc. 73, 401–406 (2010)

    Article  Google Scholar 

  8. Park, S.Y., Kim, S.M.: Acute appendicitis diagnosis using artificial neural networks. Technol. Health Care 23, S559–S565 (2015)

    Article  Google Scholar 

  9. Yoldaş, Ö., Tez, M., Karaca, T.: Artificial neural networks in the diagnosis of acute appendicitis. Am. J. Emerg. Med. 30, 1245–1247 (2012)

    Article  Google Scholar 

  10. Santos, A.M., Pereira, B.B., Seixas, J.M., Mello, F.C.Q., Kritski, A.L.: Neural networks: an application for predicting smear negative pulmonary tuberculosis. In: Auget, J.L., Balakrishnan, N., Mesbah, M., Molenberghs, G. (eds.) Advances in Statistical Methods for the Health Sciences, pp. 275–287. Springer, Boston (2007)

    Chapter  Google Scholar 

  11. El-Solh, A.A., Hsiao, C.-B., Goodnough, S., Serghani, J., Grant, B.J.B.: Predicting active pulmonary tuberculosis using an artificial neural network. Chest J. 116, 968–973 (1999)

    Article  Google Scholar 

  12. Elveren, E., Yumuvak, N.: Tuberculosis disease diagnosis using artificial neural network trained with genetic algorithm. J. Med. Syst. 35, 329–332 (2011)

    Article  Google Scholar 

  13. Er, O., Temurtas, F., Tanrikulu, A.Ç.: Tuberculosis disease diagnosis using artificial neural networks. J. Med. Syst. 34, 299–302 (2010)

    Article  Google Scholar 

  14. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10, 99–127 (2002)

    Article  Google Scholar 

  15. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learning. Evol. Intell. 1, 47–62 (2008)

    Article  Google Scholar 

  16. Miikkulainen, R.: Neuroevolution. In: Encyclopedia of Machine Learning. Springer, New York (2010)

    Google Scholar 

  17. Marchand, A., Van Lente, F., Galen, R.S.: The assessment of laboratory tests in the diagnosis of acute appendicitis. Am. J. Clin. Pathol. 80, 369–374 (1983)

    Article  Google Scholar 

  18. Weiss, S.M., Kapouleas, I.: An empirical comparison of pattern recognition, neural nets and machine learning classification methods. Read. Mach. Learn. 177–183 (1990)

    Google Scholar 

  19. Kohavi, R.: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Presented at the (1995)

    Google Scholar 

  20. Haykin, S.: Neural Networks and Learning Machines. Prentice Hall, Upper Saddle River (2009)

    Google Scholar 

  21. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: 1993 IEEE International Conference on Neural Networks, pp. 586–591 (1993)

    Google Scholar 

  22. Beale, M.H., Hagan, M.T., Demuth, H.B.: Neural network toolbox getting started guide R2011b (2011)

    Google Scholar 

Download references

Acknowledgment

Authors thank the Universidad Antonio Nariño under project 2016207, University of Connecticut, Universidad Santo Tomas and Universidade Estadual do Rio de Janeiro for the support and financial assistance in this work. Also, the Hospital Santa Clara and Carlos Awad for making available the database related with tuberculosis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro David Orjuela-Cañón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Orjuela-Cañón, A.D., Posada-Quintero, H.F., Valencia, C.H., Mendoza, L. (2018). On the Use of Neuroevolutive Methods as Support Tools for Diagnosing Appendicitis and Tuberculosis. In: Figueroa-García, J., López-Santana, E., Rodriguez-Molano, J. (eds) Applied Computer Sciences in Engineering. WEA 2018. Communications in Computer and Information Science, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-00350-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00350-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00349-4

  • Online ISBN: 978-3-030-00350-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics