Voice Pathology Detection Using Artificial Neural Networks and Support Vector Machines Powered by a Multicriteria Optimization Algorithm | SpringerLink
Skip to main content

Voice Pathology Detection Using Artificial Neural Networks and Support Vector Machines Powered by a Multicriteria Optimization Algorithm

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2018)

Abstract

Computer-aided diagnosis (CAD) systems have allowed to enhance the performance of conventional, medical diagnosis procedures in different scenarios. Particularly, in the context of voice pathology detection, the use of machine learning algorithms has proved to be a promising and suitable alternative. This work proposes the implementation of two well known classification algorithms, namely artificial neural networks (ANN) and support vector machines (SVM), optimized by particle swarm optimization (PSO) algorithm, aimed at classifying voice signals between healthy and pathologic ones. Three different configurations of the Saarbrucken voice database (SVD) are used. The effect of using balanced and unbalanced versions of this dataset is proved as well as the usefulness of the considered optimization algorithm to improve the final performance outcomes. Also, proposed approach is comparable with state-of-the-art methods.

H.J. Areiza-Laverde—This work is carried out under grants provided by Programa Nacional de Jóvenes Investigadores e Innovadores – COLCIENCIAS – Announcement 775 of 2017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acharya, U.R., Fujita, H., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M.: Application of deep convolutional neural network for automated detection of myocardial infarction using ecg signals. Inf. Sci. 415, 190–198 (2017)

    Article  Google Scholar 

  2. Al-nasheri, A., Muhammad, G., Alsulaiman, M., Ali, Z.: Investigation of voice pathology detection and classification on different frequency regions using correlation functions. J. Voice 31(1), 3–15 (2017)

    Article  Google Scholar 

  3. Al-nasheri, A., et al.: An investigation of multidimensional voice program parameters in three different databases for voice pathology detection and classification. J. Voice 31(1), 113–e9 (2017)

    Article  Google Scholar 

  4. Ali, F.: Voice recognition anatomy, processing, uses and application in C (2017)

    Google Scholar 

  5. AlZubaidi, A.K., Sideseq, F.B., Faeq, A., Basil, M.: Computer aided diagnosis in digital pathology application: review and perspective approach in lung cancer classification. In: 2017 Annual Conference on New Trends in Information & Communications Technology Applications (NTICT), pp. 219–224. IEEE (2017)

    Google Scholar 

  6. Barry, W., Pützer, M.: Saarbrucken voice database. Institute of Phonetics, Universität des Saarlandes (2007). http://www.stimmdatenbank.coli.uni-saarland.de

  7. Béranger, J.: Big Data and Ethics: The Medical Datasphere. Elsevier, New York City (2016)

    Google Scholar 

  8. Castro-Ospina, A., Castro-Hoyos, C., Peluffo-Ordonez, D., Castellanos-Dominguez, G.: Novel heuristic search for ventricular arrhythmia detection using normalized cut clustering. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7076–7079. IEEE (2013)

    Google Scholar 

  9. Chiu, C.C., et al.: State-of-the-art speech recognition with sequence-to-sequence models. arXiv preprint arXiv:1712.01769 (2017)

  10. Harar, P., Alonso-Hernandezy, J.B., Mekyska, J., Galaz, Z., Burget, R., Smekal, Z.: Voice pathology detection using deep learning: a preliminary study. In: 2017 International Conference and Workshop on Bioinspired Intelligence (IWOBI), pp. 1–4. IEEE (2017)

    Google Scholar 

  11. Hemmerling, D., Skalski, A., Gajda, J.: Voice data mining for laryngeal pathology assessment. Comput. Biol. Med. 69, 270–276 (2016)

    Article  Google Scholar 

  12. Ibrahim, S., Djemal, R., Alsuwailem, A.: Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis. Biocybern. Biomed. Eng. 38(1), 16–26 (2018)

    Article  Google Scholar 

  13. Lytras, M.D., Papadopoulou, P.: Applying Big Data Analytics in Bioinformatics and Medicine. IGI Global, Pennsylvania (2017)

    Google Scholar 

  14. Martínez, D., Lleida, E., Ortega, A., Miguel, A., Villalba, J.: Voice pathology detection on the Saarbrücken voice database with calibration and fusion of scores using MultiFocal toolkit. In: Torre Toledano, D., et al. (eds.) IberSPEECH 2012. CCIS, vol. 328, pp. 99–109. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35292-8_11

    Chapter  Google Scholar 

  15. Mendoza, L., Peña, J., Muñoz-Bedoya, L., Velandia-Villamizar, H.: Speech subvocal signal processing using packet wavelet and neuronal network. TecnoLógicas, 655–667 (2013). https://doi.org/10.22430/22565337.371

  16. Muhammad, G., Alhamid, M.F., Hossain, M.S., Almogren, A.S., Vasilakos, A.V.: Enhanced living by assessing voice pathology using a co-occurrence matrix. Sensors 17(2), 267 (2017)

    Article  Google Scholar 

  17. Muhammad, G., et al.: Voice pathology detection using interlaced derivative pattern on glottal source excitation. Biomed. Signal Process. Control 31, 156–164 (2017)

    Article  Google Scholar 

  18. Muhammad, G., et al.: Automatic voice pathology detection and classification using vocal tract area irregularity. Biocybern. Biomed. Eng. 36(2), 309–317 (2016)

    Article  Google Scholar 

  19. Orozco-Naranjo, A.J., Muñoz-Gutiérrez, P.A.: Detection of pathological and normal heartbeat using wavelet packet, support vector machines and multilayer perceptron. Tecno Lógicas 31, 73–91 (2013)

    Google Scholar 

  20. Parascandolo, P., Cesario, L., Vosilla, L., Viano, G.: Computer aided diagnosis: state-of-the-art and application to musculoskeletal diseases. In: Magnenat-Thalmann, N., Ratib, O., Choi, H.F. (eds.) 3D Multiscale Physiological Human, pp. 277–296. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6275-9_12

    Chapter  Google Scholar 

  21. Schalkoff, R.J.: Artificial Neural Networks, vol. 1. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  22. Schilling, R.J., Harris, S.L.: Fundamentals of Digital Signal Processing Using MATLAB. Cengage Learning, Boston (2011)

    Google Scholar 

  23. Semmlow, J.L., Griffel, B.: Biosignal and Medical Image Processing. CRC Press, Boca Raton (2014)

    Google Scholar 

  24. Shinohara, S., et al.: Multilingual evaluation of voice disability index using pitch rate. ASTESJ 2(3), 765–772 (2017)

    Article  Google Scholar 

  25. Shriberg, L.D., et al.: A diagnostic marker to discriminate childhood apraxia of speech from speech delay: II. Validity studies of the pause marker. J. Speech Lang. Hear. Res. 60(4), S1118–S1134 (2017)

    Article  Google Scholar 

  26. Summers, R.M.: Deep learning and computer-aided diagnosis for medical image processing: a personal perspective. In: Lu, L., Zheng, Y., Carneiro, G., Yang, L. (eds.) Deep Learning and Convolutional Neural Networks for Medical Image Computing. ACVPR, pp. 3–10. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-42999-1_1

    Chapter  Google Scholar 

  27. von Tscharner, V.: Time-frequency and principal-component methods for the analysis of emgs recorded during a mildly fatiguing exercise on a cycle ergometer. J. Electromyogr. Kinesiol. 12(6), 479–492 (2002)

    Article  Google Scholar 

  28. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1999). https://doi.org/10.1007/978-1-4757-3264-1

    Book  MATH  Google Scholar 

  29. Verde, L., De Pietro, G., Sannino, G.: Voice disorder identification by using machine learning techniques. IEEE Access 6, 16246–16255 (2018)

    Article  Google Scholar 

  30. Wojcicki, K.: HTK MFCC MATLAB. MATLAB Central File Exchange (2011)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the grants provided by Programa Nacional de Jóvenes Investigadores e Innovadores – COLCIENCIAS – Announcement 775 of 2017 and the support for Instituto Tecnológico Metropolitano from Medellin-Colombia.

Also, authors specially thank the support given by the SDAS Research Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Eduardo Castro-Ospina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Areiza-Laverde, H.J., Castro-Ospina, A.E., Peluffo-Ordóñez, D.H. (2018). Voice Pathology Detection Using Artificial Neural Networks and Support Vector Machines Powered by a Multicriteria Optimization Algorithm. In: Figueroa-García, J., López-Santana, E., Rodriguez-Molano, J. (eds) Applied Computer Sciences in Engineering. WEA 2018. Communications in Computer and Information Science, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-00350-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00350-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00349-4

  • Online ISBN: 978-3-030-00350-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics