The Fair Proportion Is a Shapley Value on Phylogenetic Networks Too | SpringerLink
Skip to main content

The Fair Proportion Is a Shapley Value on Phylogenetic Networks Too

  • Chapter
  • First Online:
Enjoying Natural Computing

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11270))

  • 426 Accesses

Abstract

The Fair Proportion of a species in a phylogenetic tree is a very simple measure that has been used to assess its genetic value relative to the overall phylogenetic diversity represented by the tree. It has recently been proved by Fuchs and Jin to be equal to the Shapley Value of the coalitional game that sends each subset of species to its rooted Phylogenetic Diversity in the tree. We prove in this paper that this result extends to the natural translations of the Fair Proportion and the rooted Phylogenetic Diversity to rooted phylogenetic networks. We also generalize to rooted phylogenetic networks the expression for the Shapley Value of the unrooted Phylogenetic Diversity game on a phylogenetic tree established by Haake, Kashiwada and Su.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cardona, G., Mir, A., Rotger, L., Rosselló, F., Sánchez, D.: Cophenetic metrics for phylogenetic trees, after Sokal and Rohlf. BMC Bioinf. 14, 3 (2013)

    Article  Google Scholar 

  2. Cardona, G., Rosselló, F., Valiente, G.: Extended Newick: it is time for a standard representation of phylogenetic networks. BMC Bioinf. 9, 532 (2008)

    Article  Google Scholar 

  3. Diniz, J.: Phylogenetic diversity and conservation priorities under distinct models of phenotypic evolution. Conserv. Biol. 18, 698–704 (2004)

    Article  Google Scholar 

  4. Embretson, S., Reise, S.: Item Response Theory. Psychology Press, London (2013)

    Google Scholar 

  5. Faith, D.: Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992)

    Article  Google Scholar 

  6. Fuchs, M., Jin, E.Y.: Equality of Shapley value and fair proportion index in phylogenetic trees. J. Math. Biol. 71, 1133–1147 (2015)

    Article  MathSciNet  Google Scholar 

  7. Ganapathy, G., Goodson, B., Jansen, R., Le, H., Ramachandran, V., Warnow, T.: Pattern identification in biogeography. IEEE/ACM Trans. Comput. Biol. Bioinf. 3, 334–346 (2006)

    Article  Google Scholar 

  8. Gregg, W., Ather, S., Hahn, M.: Gene-tree reconciliation with MUL-trees to resolve polyploidy events. Syst. Biol. 66, 1007–1018 (2017)

    Article  Google Scholar 

  9. Haake, C.-J., Kashiwada, A., Su, F.E.: The Shapley value of phylogenetic trees. J. Math. Biol. 56, 479–497 (2008)

    Article  MathSciNet  Google Scholar 

  10. Huson, D., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts, Algorithms and Applications. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  11. Lutsenko, M., Shadrinceva, N.: Shapley weights of test items. Vestnik Sankt-Petersburgskovo Universiteta, Seriya 10, 13, pp. 300–312 (2017, in Russian)

    Google Scholar 

  12. Nehring, K., Puppe, C.: A theory of diversity. Econometrica 70, 1155–1198 (2002)

    Article  MathSciNet  Google Scholar 

  13. Moretti, S., Patrone, F.: Transversality of the Shapley value. Top 16, 1–41 (2008)

    Article  MathSciNet  Google Scholar 

  14. Redding, D., Mooers, A.: Incorporating evolutionary measures into conservation prioritization. Conserv. Biol. 20, 1670–1678 (2006)

    Article  Google Scholar 

  15. Shapley, L.: A value for n-person games. In: Kuhn, H., Tucker, A. (eds.) Contributions to the Theory of Games, Vol. II, Annals of Mathematical Studies, vol. 28, pp. 307–317. Princeton University Press (1953)

    Google Scholar 

  16. Sokal, R., Rohlf, F.: The comparison of dendrograms by objective methods. Taxon 11, 33–40 (1962)

    Article  Google Scholar 

  17. Steel, M.: Phylogeny: Discrete and Random Processes in Evolution. SIAM, Philadelphia (2016)

    Book  Google Scholar 

  18. Wicke, K., Fischer, M.: Phylogenetic diversity and biodiversity indices on phylogenetic networks. Math. Biosci. 298, 80–90 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Spanish Ministry of Economy and Competitiveness and the ERDF through project DPI2015-67082-P (MINECO/FEDER). We thank I. García and the reviewers for their helpful suggestions on several aspects of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Rosselló .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coronado, T.M., Riera, G., Rosselló, F. (2018). The Fair Proportion Is a Shapley Value on Phylogenetic Networks Too. In: Graciani, C., Riscos-Núñez, A., Păun, G., Rozenberg, G., Salomaa, A. (eds) Enjoying Natural Computing. Lecture Notes in Computer Science(), vol 11270. Springer, Cham. https://doi.org/10.1007/978-3-030-00265-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00265-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00264-0

  • Online ISBN: 978-3-030-00265-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics