Abstract
We study a Life-like cellular automaton rule B2/S2345 where a cell in state ‘0’ takes state ‘1’ if it has exactly two neighbors in state ‘1’ and the cell remains in the state ‘1’ if it has between two and five neighbors in state ‘1.’ This automaton is a discrete analog spatially extended chemical media, combining both properties of sub-excitable and precipitating chemical media. When started from random initial configuration B2/S2345 automaton exhibits chaotic behavior. Configurations with low density of state ‘1’ show emergence of localized propagating patterns and stationary localizations. We construct basic logical gates and elementary arithmetical circuits by simulating logical signals with mobile localizations reaction propagating geometrically restricted by stationary non-destructible localizations. Values of Boolean variables are encoded into two types of patterns — symmetric (False) and asymmetric (True) patterns — which compete for the ‘empty’ space when propagate in the channels. Implementations of logical gates and binary adders are illustrated explicitly.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adamatzky, A.: Computing in Nonlinear Media and Automata Collectives. Institute of Physics Publishing, Bristol and Philadelphia (2001)
Adamatzky, A. (ed.): Collision-Based Computing. Springer, Berlin (2002)
Adamatzky, A.: Physarum machines: encapsulating reaction–diffusion to compute spanning tree. Naturwisseschaften 94, 975–980 (2007)
Adamatzky, A.: Hot ice computer. Phys. Lett. A 374(2), 264–271 (2009)
Adamatzky, A., Costello, B.L., Asai, T.: Reaction–Diffusion Computers. Elsevier, Amsterdam (2005)
Adamatzky, A., Martínez, G.J., Seck-Tuoh-Mora, J.C.: Phenomenology of reaction–diffusion binary-state cellular automata. Int. J. Bifurc. Chaos 16 (10), 1–21 (2006)
Beato, V., Engel, H.: Pulse propagation in a model for the photosensitive Belousov–Zhabotinsky reaction with external noise. In: Schimansky-Geier, L., Abbott, D., Neiman, A., Van den Broeck, C. (eds.) Noise in Complex Systems and Stochastic Dynamics. Proc. SPIE, vol. 5114, pp. 353–362 (2003)
Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays, vol. 2, Chap. 25. Academic Press, San Diego (1982)
Chapman, P.: Life universal computer. http://www.igblan.free-online.co.uk/igblan/ca/ (2002)
Chaté, H., Manneville, P.: Evidence of collective behavior in cellular automata. Europhys. Lett. 14, 409–413 (1991)
Cook, M.: Still Life theory. In: Griffeath, D., Moore, C. (eds.) New Constructions in Cellular Automata, pp. 93–118. Oxford University Press, London (2003)
Costello, B.L., Toth, R., Stone, C., Adamatzky, A., Bull, L.: Implementation of glider guns in the light sensitive Belousov–Zhabotinsky medium. Phys. Rev. E 79, 026114 (2009)
Dupont, C., Agladze, K., Krinsky, V.: Excitable medium with left–right symmetry breaking. Physica A 249, 47–52 (1998)
Gardner, M.: Mathematical Games — The fantastic combinations of John H. Conway’s new solitaire game Life. Sci. Am. 223, 120–123 (1970)
Gorecka, J., Gorecki, J.: T-shaped coincidence detector as a band filter of chemical signal frequency. Phys. Rev. E 67, 067203 (2003)
Gorecki, J., Yoshikawa, K., Igarashi, Y.: On chemical reactors which can count. J. Phys. Chem. A 107, 1664–1669 (2003)
Goucher, A.: Completed universal computer/constructor. http://pentadecathlon.com/lifeNews/2009/08/post.html (2009)
Gravner, J.: Growth phenomena in cellular automata. In: Griffeath, D., Moore, C. (eds.) New Constructions in Cellular Automata, pp. 161–181. Oxford University Press, London (2003)
Griffeath, D., Moore, C.: Life Without Death is P-complete. Complex Syst. 10, 437–447 (1996)
Guan, Z., Qin, X., Zhang, Y., Shi, Q.: Network structure cascade for reversible logic. In: Proceedings of the Third International Conference on Natural Computation, vol. 3, pp. 306–310 (2007)
Gutowitz, H.A., Victor, J.D.: Local structure theory in more that one dimension. Complex Syst. 1, 57–68 (1987)
Imai, K., Morita, K.: A computation-universal two-dimensional 8-state triangular reversible cellular automaton. Theor. Comput. Sci. 231, 181–191 (2000)
Krug, H.J., Pohlmann, L., Kuhnert, L.: Analysis of the modified complete Oregonator (MCO) accounting for oxygen- and photosensitivity of Belousov–Zhabotinsky systems. J. Phys. Chem. 94, 4862–4866 (1990)
Kusumi, T., Yamaguchi, T., Aliev, R., Amemiya, T., Ohmori, T., Hashimoto, H., Yoshikawa, K.: Numerical study on time delay for chemical wave transmission via an inactive gap. Chem. Phys. Lett. 271, 355–60 (1997)
Magnier, M., Lattaud, C., Heudin, J.-K.: Complexity classes in the two-dimensional life cellular automata subspace. Complex Syst. 11(6), 419–436 (1997)
Martínez, G.J., Méndez, A.M., Zambrano, M.M.: Un subconjunto de autómata celular con comportamiento complejo en dos dimensiones. http://uncomp.uwe.ac.uk/genaro/papers.html (2005)
Martínez, G.J., Adamatzky, A., Costello, B.L.: On logical gates in precipitating medium: cellular automaton model. Phys. Lett. A 1(48), 1–5 (2008)
Martínez, G.J., Adamatzky, A., McIntosh, H.V.: Localization dynamic in a binary two-dimensional cellular automaton: the Diffusion Rule. J. Cell. Autom. 5, 284–313 (2010)
Martínez, G.J., Adamatzky, A., Morita, K., Margenstern, M.: Majority adder implementation by competing patterns in Life-like rule B2/S2345. In: Calude, C.S., et al. (eds.) UC 2010. Lecture Notes in Computer Science, vol. 6079, pp. 93–104. Springer, Berlin (2010)
Martínez, G.J., Adamatzky, A., McIntosh, H.V., Costello, B.L.: Computation by competing patterns: Life rule B2/S2345678. In: Adamatzky, A., et al. (eds.) Automata 2008: Theory and Applications of Cellular Automata. Luniver Press, Beckington (2008)
McIntosh, H.V.: Life’s Still Lifes. http://delta.cs.cinvestav.mx/~mcintosh (1988)
McIntosh, H.V.: Wolfram’s Class IV and a Good Life. Physica D 45, 105–121 (1990)
Minsky, M.: Computation: Finite and Infinite Machines. Prentice Hall, New York (1967)
Mitchell, M.: Life and evolution in computers. Hist. Philos. Life Sci. 23, 361–383 (2001)
Morita, K., Margenstern, M., Imai, K.: Universality of reversible hexagonal cellular automata. Theor. Inform. Appl. 33, 535–550 (1999)
Motoike, I.N., Yoshikawa, K., Iguchi, Y., Nakata, S.: Real-time memory on an excitable field. Phys. Rev. E 63, 036220 (2001)
Packard, N., Wolfram, S.: Two-dimensional cellular automata. J. Stat. Phys. 38, 901–946 (1985)
Porod, W., Lent, C.S., Bernstein, G.H., Orlov, A.O., Amlani, I., Snider, G.L., Merz, J.L.: Quantum-dot cellular automata: computing with coupled quantum dots. Int. J. Electron. 86(5), 549–590 (1999)
Rendell, P.: Turing universality of the game of life. In: Adamatzky, A. (ed.) Collision-Based Computing, pp. 513–540. Springer, Berlin (2002)
Rennard, J.P.: Implementation of logical functions in the Game of Life. In: Adamatzky, A. (ed.) Collision-Based Computing, pp. 491–512. Springer, Berlin (2002)
Sielewiesiuk, J., Gorecki, J.: Logical functions of a cross junction of excitable chemical media. J. Phys. Chem. A 105, 8189–8195 (2001)
Toffoli, T.: Non-conventional computers. In: Webster, J. (ed.) Encyclopedia of Electrical and Electronics Engineering, vol. 14, pp. 455–471. Wiley, New York (1998)
Tóth, A., Showalter, K.: Logic gates in excitable media. J. Chem. Phys. 103, 2058–2066 (1995)
von Neumann, J.: Theory of Self-reproducing Automata. Edited and completed by Burks, A.W. University of Illinois, Urbana and London (1966)
Wainwright, R. (ed.): Lifeline – A Quarterly Newsletter for Enthusiasts of John Conway’s Game of Life, Issues 1 to 11, March 1971 to September 1973
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag London Limited
About this chapter
Cite this chapter
Martínez, G.J., Adamatzky, A., Morita, K., Margenstern, M. (2010). Computation with Competing Patterns in Life-Like Automaton. In: Adamatzky, A. (eds) Game of Life Cellular Automata. Springer, London. https://doi.org/10.1007/978-1-84996-217-9_27
Download citation
DOI: https://doi.org/10.1007/978-1-84996-217-9_27
Publisher Name: Springer, London
Print ISBN: 978-1-84996-216-2
Online ISBN: 978-1-84996-217-9
eBook Packages: Computer ScienceComputer Science (R0)