Respectful Cameras: Detecting Visual Markers in Real-Time to Address Privacy Concerns | SpringerLink
Skip to main content

Respectful Cameras: Detecting Visual Markers in Real-Time to Address Privacy Concerns

  • Chapter
Protecting Privacy in Video Surveillance

Abstract

To address privacy concerns regarding digital video surveillance cameras, we propose a practical, real-time approach that preserves the ability to observe actions while obscuring individual identities. In the Respectful Cameras system, people who wish to remain anonymous wear colored markers such as hats or vests. The system automatically tracks these markers using statistical learning and classification to infer the location and size of each face. It obscures faces with solid ellipsoidal overlays, while minimizing the overlay area to maximize the remaining observable region of the scene. Our approach uses a visual color-tracker based on a 9D color-space using a Probabilistic Adaptive Boosting (AdaBoost) classifier with axis-aligned hyperplanes as weak hypotheses. We then use Sampling Importance Resampling (SIR) Particle Filtering to incorporate interframe temporal information. Because our system explicitly tracks markers, our system is well-suited for applications with dynamic backgrounds or where the camera can move (e.g., under remote control). We present experiments illustrating the performance of our system in both indoor and outdoor settings, with occlusions, multiple crossing targets, lighting changes, and observation by a moving robotic camera. Results suggest that our implementation can track markers and keep false negative rates below 2%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. TRUST: Team for research in ubiquitous secure technology. URL http://www.truststc.org/

  2. Unblinking: New perspectives on visual privacy in the 21st century. URL http://www.law.berkeley.edu/institutes/bclt/events/unblinking/unblink.html

  3. Amine, A., Ghouzali, S., Rziza, M.: Face detection in still color images using skin color information. In: Proceedings of International Symposium on Communications, Control, and Signal Processing (ISCCSP) (2006)

    Google Scholar 

  4. Anderson, M.: Picture this: Aldermen caught on camera. Chicago Sun-Times (2006)

    Google Scholar 

  5. Arulampalam, S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Transactions of Signal Processing 50(2) 174–188 (2002)

    Article  Google Scholar 

  6. Avidan, S.: Spatialboost: Adding spatial reasoning to AdaBoost. In: Proceedings of European Conference on Computer Vision, pp. 386–396 (2006)

    Google Scholar 

  7. Bahlmann, C., Zhu, Y., Ramesh, V., Pellkofer, M., Koehler, T.: A system for traffic sign detection, tracking, and recognition using color, shape, and motion information. In: IEEE Proceedings of Intelligent Vehicles Symposium, pp. 255–260 (2005)

    Google Scholar 

  8. Bourdev, L., Brandt, J.: Robust object detection via soft cascade. Proceedings of IEEE Conference Computer Vision and Pattern Recognition (CVPR) 2, 236–243 (2005)

    Google Scholar 

  9. Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library, 1st edn. O’Reilly (2008)

    Google Scholar 

  10. Brassil, J.: Using mobile communications to assert privacy from video surveillance. Proceedings of the IEEE International Parallel and Distributed Processing Symposium, p. 8 (2005)

    Google Scholar 

  11. Chen, D., Bharusha, A., Wactlar, H.: People identification across ambient camera networks. In: International Conference on Multimedia Ambient Intelligence, Media and Sensing (AIMS) (2007)

    Google Scholar 

  12. Chen, D., Yang, J., Yan, R., Chang, Y., Tools for Protecting the Privacy of Specific Individuals in Video, EURASIP Journal on Applied Signal Processing, (2007)

    Google Scholar 

  13. Chinomi, K., Nitta, N., Ito, Y., Babaguchi, N.: PriSurv: Privacy protected video surveillance system using adaptive visual abstraction. In: S. Satoh, F. Nack, M. Etoh (eds.) MMM, Lecture Notes in Computer Science, vol. 4903, pp. 144–154. Springer (2008)

    Google Scholar 

  14. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3) 297–302 (1945)

    Article  Google Scholar 

  15. Dornaika, F., Ahlberg, J.: Fast and reliable active appearance model search for 3-D face tracking. IEEE Transactions of Systems, Man and Cybernetics, Part B 34(4) 1838–1853 (2004)

    Article  Google Scholar 

  16. Fang, J., Qiu, G.: A colour histogram based approach to human face detection. International Conference on Visual Information Engineering (VIE) pp. 133–136 (2003)

    Google Scholar 

  17. Feraud, R., Bernier, O.J., Viallet, J.E., Collobert, M.: A fast and accurate face detector based on neural networks. IEEE Transactions of Pattern Analysis and Machine Intelligence (PAMI) 23(1) 42–53 (2001)

    Article  Google Scholar 

  18. Fidaleo, D.A., Nguyen, H.A., Trivedi, M.: The networked sensor tapestry (NeST): A privacy enhanced software architecture for interactive analysis of data in video-sensor networks. In: Proceedings of ACM Workshop on Video Surveillance & Sensor Networks (VSSN) pp. 46–53. ACM Press, New York, USA (2004)

    Chapter  Google Scholar 

  19. Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics Principles and Practice. Reading, Mass.: Addison-Wesley, New York (1990)

    Google Scholar 

  20. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Computer and System Sciences 55(1) 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical view of boosting. Annals of Statistics 28(2) 337–407 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gavison, R.: Privacy and the limits of the law. 89 Yale L.J., pp. 421–471 (1980)

    Google Scholar 

  23. Google Inc.: Privacy FAQ. URL http://www.google.com/privacy_faq.htmltoc-street-view-images

  24. Greenspan, H., Goldberger, J., Eshet, I.: Mixture model for face-color modeling and segmentation. Pattern Recognition Letters 22(14) 1525–1536 (2001)

    Article  MATH  Google Scholar 

  25. Hampapur, A., Borger, S., Brown, L., Carlson, C., Connell, J., Lu, M., Senior, A., Reddy, V., Shu, C., Tian, Y.: S3: The IBM smart surveillance system: From transactional systems to observational systems. Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on 4, IV-1385-IV-1388 (2007)

    Google Scholar 

  26. Jain, A.K.: Fundamentals of digital image processing. Prentice Hall International (1989)

    Google Scholar 

  27. Kalman, R.: A new approach to linear filtering and prediction problems. Transactions of the American Society of Mechanical Engineers, Journal of Basic Engineering, pp. 35–46 (1960)

    Google Scholar 

  28. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97(1–2) 273–324 (1997)

    Article  MATH  Google Scholar 

  29. Kohtake, N., Rekimoto, J., Anzai, Y.: InfoStick: An interaction device for inter-appliance computing. Lecture Notes in Computer Science 1707, 246–258 (1999)

    Article  Google Scholar 

  30. Kong, S.G., Heo, J., Abidi, B.R., Paik, J., Abidi, M.A.: Recent advances in visual and infrared face recognition: A review. Transactions of Computer Vision and Image Understanding (CVIU) 97(1) 103–135 (2005)

    Article  Google Scholar 

  31. Lee, D.S.: Effective gaussian mixture learning for video background subtraction. IEEE Transactions of Pattern Analysis and Machine Intelligence 27, 827– 832 (2005)

    Article  Google Scholar 

  32. Lei, Y., Ding, X., Wang, S.: AdaBoost tracker embedded in adaptive Particle Filtering. In: Proceedings of International Conference on Pattern Recognition (ICPR) vol. 4, pp. 939–943 (2006)

    Google Scholar 

  33. Lin, H.J., Yen, S.H., Yeh, J.P., Lin, M.J.: Face detection based on skin color segmentation and SVM classification. Secure System Integration and Reliability Improvement (SSIRI) pp. 230–231 (2008)

    Google Scholar 

  34. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. In: International Journal of Computer Vision, vol. 20, pp. 91–110 (2003)

    Google Scholar 

  35. McCahill, M., Norris, C.: From cameras to control rooms: The mediation of the image by CCTV operatives. CCTV and Social Control: The Politics and Practice of Video Surviellance-European and Global Perspectives (2004)

    Google Scholar 

  36. Moore, M.T.: Cities opening more video surveillance eyes. USA Today (2005)

    Google Scholar 

  37. New York Civil Liberties Union (NYCLU): Report documents rapid proliferation of video surveillance cameras, calls for public oversight to prevent abuses (2006). URL http://www.nyclu.org/whoswatching_pr_121306.html

  38. Nissenbaum, H.F.: Privacy as contextual integrity. Washington Law Review 79(1) (2004)

    Google Scholar 

  39. Okuna, K., Taleghani, A., de Freitas, N., Little, J., Lowe, D.: A boosted Particle Filter: Multitarget detection and tracking. In: Proceedings of Conference European Conference on Computer Vision (ECCV) (2004)

    Google Scholar 

  40. Opelt, A., Fussenegger, M., Pinz, A., Auer, P.: Weak hypotheses and boosting for generic object detection and recognition. In: Proceedings of Conference European Conference on Computer Vision (ECCV) pp. 71–84 (2004)

    Google Scholar 

  41. Osuna, E., Freund, R., Girosi, F.: Training support vector machines: An application to face detection. Proceedings of IEEE Conference Computer Vision and Pattern Recognition (CVPR) pp. 130–136 (1997)

    Google Scholar 

  42. Perez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based probabilistic tracking. In: Proceedings of European Conference on Computer Vision (ECCV) pp. 661–675 (2002)

    Google Scholar 

  43. Rosenfeld, A.: Connectivity in digital pictures. Journal of the ACM (JACM) 17(1) 146–160 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  44. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Pearson Education (1995)

    Google Scholar 

  45. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Computational Learing Theory, pp. 80–91 (1998)

    Google Scholar 

  46. Schiff, J., Meingast, M., Mulligan, D.K., Sastry, S., Goldberg, K.: Respectful cameras: Detecting visual markers in real-time to address privacy concerns. In: International Conference on Intelligent Robots and Systems (IROS) pp. 971–978 (2007)

    Google Scholar 

  47. Senior, A., Hampapur, A., Tian, Y., Brown, L., Pankanti, S., Bolle, R.: Appearance models for occlusion handling. Journal of Image and Vision Computing (IVC) 24(11) 1233–1243 (2006)

    Article  Google Scholar 

  48. Senior, A., Pankanti, S., Hampapur, A., Brown, L., Tian, Y.L., Ekin, A., Connell, J., Shu, C.F., Lu, M.: Enabling video privacy through computer vision. IEEE Security & Privacy 3(3) 50–57 (2005)

    Article  Google Scholar 

  49. Shaw, R.: Recognition markets and visual privacy. In: UnBlinking: New Perspectives on Visual Privacy in the 21st Century (2006)

    Google Scholar 

  50. Turk, M., Pentland, A.: Face recognition using Eigenfaces. In: Proceedings of IEEE Conference Computer Vision and Pattern Recognition (CVPR) pp. 586–591 (1991)

    Google Scholar 

  51. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1, 511 (2001)

    Google Scholar 

  52. Wu, B., Nevatia, R.: Detection of multiple, partially occluded humans in a single image by Bayesian combination of edgelet part detectors. IEEE International Conference on Computer Vision (ICCV) 1, 90–97 (2005)

    Google Scholar 

  53. Wu, B., Nevatia, R.: Tracking of multiple, partially occluded humans based on static body part detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1, 951–958 (2006)

    Google Scholar 

  54. Wu, Y.W., Ai, X.Y.: Face detection in color images using AdaBoost algorithm based on skin color information. In: International Workshop on Knowledge Discovery and Data Mining WKDD, pp. 339–342 (2008)

    Google Scholar 

  55. Yang, M., Kriegman, D., Ahuja, N.: Detecting faces in images: A survey. IEEE Transactions of Pattern Analysis and Machine Intelligence (PAMI) 24(1) 34–58 (2002)

    Article  Google Scholar 

  56. Zhang, W., Ching, S., Cheung, S., Chen, M.: Hiding privacy information in video surveillance system. Proceedings of IEEE International Conference on Image Processing (ICIP) 3, II-868-71 (2005)

    Google Scholar 

  57. Zhang, X., Fronz, S., Navab, N.: Visual marker detection and decoding in AR systems: A comparative study. In: International Symposium on Mixed and Augmented Reality, pp. 97–106 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Schiff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schiff, J., Meingast, M., Mulligan, D.K., Sastry, S., Goldberg, K. (2009). Respectful Cameras: Detecting Visual Markers in Real-Time to Address Privacy Concerns. In: Senior, A. (eds) Protecting Privacy in Video Surveillance. Springer, London. https://doi.org/10.1007/978-1-84882-301-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-301-3_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-300-6

  • Online ISBN: 978-1-84882-301-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics