iTRAQ Data Interpretation | SpringerLink
Skip to main content

iTRAQ Data Interpretation

  • Protocol
  • First Online:
Quantitative Methods in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 893))

Abstract

Quantitative proteomic analysis can help elucidating unexplored biological questions; it, however, relies on highly reproducible experiments and reliable data processing. Among the existing strategies, iTRAQ is known as an easy to use method allowing relative comparison of up to eight multiplexed samples.

Once the data is acquired it is important that the final protein quantification reflects the actual amounts in the samples. Data interpretation must thus be achieved with a constant focus on quality. Here, we describe a workflow for processing iTRAQ data in user-friendly environments with emphasis on quality control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
JPY 5480
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 20734
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

iTRAQ:

Isobaric tag for relative and absolute quantification

MS:

Mass spectrometry

References

  1. Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  PubMed  CAS  Google Scholar 

  2. Kessner D, Chambers M, Burke R et al (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24:2534–2536

    Article  PubMed  CAS  Google Scholar 

  3. Sturm M, Bertsch A, Gropl C et al (2008) OpenMS—an open-source software framework for mass spectrometry. BMC Bioinformatics 9:163

    Article  PubMed  Google Scholar 

  4. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20: 3551–3567

    Article  PubMed  CAS  Google Scholar 

  5. Colaert N, Helsens K, Impens F et al (2010) Rover: a tool to visualize and validate quantitative proteomics data from different sources. Proteomics 10:1226–1229

    Article  PubMed  CAS  Google Scholar 

  6. Martens L, Chambers M, Sturm M et al (2011) mzML—a community standard for mass spectrometry data. Mol Cell Proteomics 10(1):R110.000133

    Article  PubMed  Google Scholar 

  7. Kirkpatrick DS, Gerber SA, Gygi SP (2005) The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35:265–273

    Article  PubMed  CAS  Google Scholar 

  8. Nesvizhskii AI, Aebersold R (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 4:1419–1440

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The financial support provided by the Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen and by the Bundesministerium für Bildung und Forschung is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Sickmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vaudel, M., Burkhart, J.M., Zahedi, R.P., Martens, L., Sickmann, A. (2012). iTRAQ Data Interpretation. In: Marcus, K. (eds) Quantitative Methods in Proteomics. Methods in Molecular Biology, vol 893. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-885-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-885-6_30

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-884-9

  • Online ISBN: 978-1-61779-885-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics