Abstract
Partitional clustering is a type of clustering algorithms that divide a set of data points into disjoint subsets. Each data point is in exactly one subset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Recommended Reading
Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619
Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodol) 39(1):1–38
Gionis A, Indyk P, Motwani R (1999) Similarity search in high dimensions via hashing. In: proceedings of the 25th international conference on very large data bases (VLDB’99), San Francisco. Morgan Kaufmann Publishers Inc, pp 518–529
Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques, 3rd edn. Morgan Kaufmann, San Francisco
Heyer L, Kruglyak S, Yooseph S (1999) Exploring expression data: identification and analysis of coexpressed genes. Genome Res 9:1106–1115
Kaufman L, Rousseeuw PJ (2005) Finding groups in data: an introduction to cluster analysis. Wiley series in probability and statistics. Wiley-Interscience, Hoboken
Lloyd SP (1957) Least squares quantization in PCM. Technical report RR-5497, Bell Lab
Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media New York
About this entry
Cite this entry
Jin, X., Han, J. (2017). Partitional Clustering. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning and Data Mining. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7687-1_637
Download citation
DOI: https://doi.org/10.1007/978-1-4899-7687-1_637
Published:
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4899-7685-7
Online ISBN: 978-1-4899-7687-1
eBook Packages: Computer ScienceReference Module Computer Science and Engineering