Partitional Clustering | SpringerLink
Skip to main content

Partitional Clustering

  • Reference work entry
  • First Online:
Encyclopedia of Machine Learning and Data Mining

Abstract

Partitional clustering is a type of clustering algorithms that divide a set of data points into disjoint subsets. Each data point is in exactly one subset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 142999
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 92949
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Recommended Reading

  • Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodol) 39(1):1–38

    MathSciNet  MATH  Google Scholar 

  • Gionis A, Indyk P, Motwani R (1999) Similarity search in high dimensions via hashing. In: proceedings of the 25th international conference on very large data bases (VLDB’99), San Francisco. Morgan Kaufmann Publishers Inc, pp 518–529

    Google Scholar 

  • Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques, 3rd edn. Morgan Kaufmann, San Francisco

    MATH  Google Scholar 

  • Heyer L, Kruglyak S, Yooseph S (1999) Exploring expression data: identification and analysis of coexpressed genes. Genome Res 9:1106–1115

    Article  Google Scholar 

  • Kaufman L, Rousseeuw PJ (2005) Finding groups in data: an introduction to cluster analysis. Wiley series in probability and statistics. Wiley-Interscience, Hoboken

    Google Scholar 

  • Lloyd SP (1957) Least squares quantization in PCM. Technical report RR-5497, Bell Lab

    Google Scholar 

  • Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this entry

Cite this entry

Jin, X., Han, J. (2017). Partitional Clustering. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning and Data Mining. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7687-1_637

Download citation

Publish with us

Policies and ethics