Abstract
This chapter presents a novel scheme for analyzing the crowd behavior from visual crowded scenes. The proposed method starts from the assumption that the interaction force, as estimated by the Social Force Model (SFM), is a significant feature to analyze crowd behavior. We step forward this hypothesis by optimizing this force using Particle Swarm Optimization (PSO) to perform the advection of a particle population spread randomly over the image frames. The population of particles is drifted towards the areas of the main image motion, driven by the PSO fitness function aimed at minimizing the interaction force, so as to model the most diffused, normal behavior of the crowd. We then use this proposed particle advection scheme to detect both global and local anomaly events in the crowded scene. A large set of experiments are carried out on public available datasets and results show the consistent higher performances of the proposed method as compared to other state-of-the-art algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adam, A., Rivlin, E., Shimshoni, I., Reinitz, D.: Robust real-time unusual event detection using multiple fixed-location monitors. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 555–560 (2008)
Ali, S., Shah, M.: A Lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–6. Los Alamitos, CA, USA (2007)
Antic, B., Ommer, B.: Video parsing for abnormality detection. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 2415–2422. Los Alamitos, CA, USA, (2011)
Barnard, K., Duygulu, P., Freitas, D.N., Forsyth, F., Blei, D., Jordan, M.: Matching words and pictures. J. Mach. Learn. Res. 3(1), 1107–1135 (2003)
Blei, M.D., Ng, Y.A., Jordan, I.M.: Latent dirichlet allocation. J. Mach. Learn. Res. 34(1), 993–1022 (1981)
Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Proceedings of European Conference on Computer Vision (ECCV), pp. 1–10. Prague (2004)
Cheng, Y.: Mean shift, mode seeking and clustering. IEEE Trans. PAMI 17(8), 790–799 (1995)
Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. PAMI, Colorado Springs, Colorado, USA, 24(5), 603–619 (2002)
Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–10. Colorado Springs, Colorado, USA (2011)
Cristani, M., Raghavendra, R., Del Bue, A., Murino, V.: Human behavior analysis in video surveillance: a social signal processing perspective. Neurocomputing, 100, 86–97 (2013)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 886–893. San Diego, CA, USA (2005)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(1), 381–395 (1981)
Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(4), 42–82 (1995)
Jacques, J.C.S., Jr., Raupp Musse, S., Jung, C.R.: Crowd analysis using computer vision techniques: a survey. IEEE Signal Process. Mag. 27(5), 66–77 (2010)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948. Washington, DC, USA (1995)
Kim, J., Grauman, K.: Observe locally, infer globally: a space-time MRF for detecting abnormal activities with incremental updates. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2921–2928. Miami, Florida, USA (2009)
Kratz, L., Nishino, K.: Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1446–1453. Miami, Florida, USA (2009)
Krausz, B., Bauckhage, C.: Automatic detection of dangerous motion behavior in human crowds. In: Proceedings of IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS), pp. 224–229. Washington, DC, USA (2011)
Lekien, F., Marsden, J.: Tricubic interpolation in three dimensions. J. Numer. Methods Eng. 63(3), 455–471 (2005)
Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1975–1981. San Francisco (2010)
Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 935–942. Miami, Florida, USA (2009)
Mehran, R., Moore, B., Shah, M.: A streakline representation of flow in crowded scenes. In: Proceedings of European Conference on Computer Vision (ECCV), pp. 1–10. Heraklion, Crete, Greece (2010)
Moore, B., Ali, S., Mehran, R., Shah, M.: Visual crowd surveillance through a hydrodynamics lens. Commun. ACM 54(12), 64–73 (2011)
PETS 2009 dataset. http://ftp.cs.rdg.ac.uk/PETS2009/
Raghavendra, R., Del Bue, A., Cristani, M., Murino, V.: Abnormal crowd behavior detection by social force optimization. In: Proceedings of Human Behavior Understanding (HBU-2011), pp. 134–145. Amsterdam, The Netherlands (2011)
Raghavendra, R., Del Bue, A., Cristani, M., Murino, V.: Optimizing interaction force for global anomaly detection in crowded scenes. In: Proceedings of IEEE Workshop on Modeling, Simulation and Visual Analysis of Large Crowds (MSVLC-2011), pp. 136–143. Barcelona, Spain (2011)
Reicher, S.: The Blackwell Handbook of Social Psychology: Group Processes. Blackwell, Oxford (2001)
UMN dataset. http://www.mha.cs.umn.edu/movies/crowd-activity-all.avi
Wang, X., Ma, X., Grimson, W.E.L.: Unsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian models. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 539–555 (2009)
Wu, S., Moore, B.E., Shah, M.: Chaotic invariants of Lagrangian particle trajectories for anomaly detection in crowded scenes. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 1–6. San Francisco, CA, USA (2010)
Zhan, B., Monekosso, D., Remagnino, P., Velastin, S.A., Xu, L.Q.: Crowd analysis: a survey. Mach. Vis. Appl. 19(5–6), 345–357 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media New York
About this chapter
Cite this chapter
Raghavendra, R., Cristani, M., Del Bue, A., Sangineto, E., Murino, V. (2013). Anomaly Detection in Crowded Scenes: A Novel Framework Based on Swarm Optimization and Social Force Modeling. In: Ali, S., Nishino, K., Manocha, D., Shah, M. (eds) Modeling, Simulation and Visual Analysis of Crowds. The International Series in Video Computing, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8483-7_15
Download citation
DOI: https://doi.org/10.1007/978-1-4614-8483-7_15
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-8482-0
Online ISBN: 978-1-4614-8483-7
eBook Packages: Computer ScienceComputer Science (R0)