Who Are We Talking About? Identifying Scientific Populations Online | SpringerLink
Skip to main content

Who Are We Talking About? Identifying Scientific Populations Online

  • Conference paper
  • First Online:
Semantic Web and Web Science

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Abstract

In this paper, we begin to address the question of which scientists are online. Prior studies have shown that Web users are only a segmented reflection of the actual off-line population, and thus when studying online behaviors we need to be explicit about the representativeness of the sample under study to accurately relate trends to populations. When studying social phenomena on the Web, the identification of individuals is essential to be able to generalize about specific segments of a population off-line. Specifically, we present a method for assessing the online activity of a known set of actors. The method is tailored to the domain of science. We apply the method to a population of Dutch computer scientists and their coauthors. The results when combined with metadata of the set provide insights into the representativeness of the sample of interest.

The study results show that scientists of above-average tenure and performance are overrepresented online, suggesting that when studying online behaviors of scientists we are commenting specifically on the behaviors of above-average-performing scientists. Given this finding, metrics of Web behaviors of science may provide a key tool for measuring knowledge production and innovation at a faster rate than traditional delayed bibliometric studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://twitter.com/.

  2. 2.

    http://www.linkedin.com/.

  3. 3.

    http://www.mendeley.com/.

  4. 4.

    http://www.slideshare.net/.

  5. 5.

    http://developer.yahoo.com/geo/placefinder/.

  6. 6.

    http://www.narcis.nl/.

References

  1. Bar-Ilan, J.: Web of science with the conference proceedings citation indexes: the case of computer science. Scientometrics 83(3), 809–824 (2010)

    Article  Google Scholar 

  2. Colazzo, L., Molinari, A., Villa, N.: From e-learning to “co-learning”: the role of virtual communities. In: Kendall, M., Samways, B. (eds.) IFIP International Federation for Information Processing 281, pp. 329–338 (2008)

    Google Scholar 

  3. de Solla Price, D.J.: Networks of scientific papers. Science 149, 510–515 (1965)

    Article  Google Scholar 

  4. Dunbar, K.: How scientists think: Online creativity and conceptual change in science. In: Ward, T.B., Smith, S.M., Vaid, S. (eds.), Conceptual Structures and Processes: Emergence, Discovery and Change, pp. 461–493. American Psychological Association, Washington, DC (1997)

    Google Scholar 

  5. Groth, P., Gurney, T.: Studying scientific discourse on the web using bibliometrics: A chemistry blogging case study. In: Proceedings of the WebSci10: Extending the Frontiers of Society On-Line. Raleigh, NC: US, April 26–27th, 2010

    Google Scholar 

  6. Gurney, T., Horlings, E., van den Besselaar, P.: Author disambiguation using multi-aspect similarity indicators. Scientometrics, 1–15 (2012)

    Google Scholar 

  7. Hampton, K., Sessions-Goulet, L., Rainie, L., Purcell, K.: Social networking sites and our lives. Pew Res. Center (2011)

    Google Scholar 

  8. Latour, B., Woolgar, S.: Laboratory Life: The Social Construction of Scientific Facts. Sage Publications, Los Angeles (1979)

    Google Scholar 

  9. Ley, M.: Dblp - some lessons learned. PVLDB 2(2), 1493–1500 (2009)

    MathSciNet  Google Scholar 

  10. Lucas, J.W.: Theory-testing, generalization, and the problem of external validity. Socio. Theor 21, 236–253 (2003)

    Article  Google Scholar 

  11. Mika, P.: Social networks and the semantic web. In: Web Intelligence, pp. 285–291(2004)

    Google Scholar 

  12. Newman, M.E.J.: The structure of scientific collaboration networks. In: Proceedings of the National Academy of Sciences 98, pp. 404–409 (2001)

    Article  MATH  Google Scholar 

  13. Neylon, C., Wu, S.: Article-level metrics and the evolution of scientific impact. PLoS Biol. 7(11: e1000242) (2009)

    Google Scholar 

  14. Priem, J., Costello, K.: How and why scholars cite on twitter. In: Proceedings of the 73rd ASIS&T Annual Meeting, Pittsburgh, PA, (2010)

    Google Scholar 

  15. Priem, J., Costello, K., Dzuba, T.: Prevalence and use of twitter among scholars. In: Metrics 2011: Symposium on Informetric and Scientometric Research. Poster, New Orleans, LA, October 2011

    Google Scholar 

  16. Priem, J., Hemminger, B.M.: Scientometrics 2.0: Toward new metrics of scholarly impact on the social web. First Monday (7) (2010)

    Google Scholar 

  17. Priem, J., Parra, C., Piwowar, H., Groth, P., Waagmeester, A.: Uncovering impacts: a case study in using altmetrics tools. In: Workshop on the Semantic Publishing SePublica 2012 at the 9th Extended Semantic Web Conference, pp. 1–5(2012)

    Google Scholar 

  18. Priem, J., Taraborelli, D., Groth, P., Neylon, C.: Alt-metrics: A manifesto, (v.1.0). http://altmetrics.org/manifesto, 26 October 2010

  19. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’08, pp. 990–998. ACM, New York, NY, (2008)

    Google Scholar 

  20. Taraborelli, D.: Readermeter: Crowdsourcing research impact. Academic Productivity, 2010. Retrieved April 5, 2011, from: http://www.academicproductivity.com/2010/readermeter-crowdsourcing-research-impact/

  21. Walsh, J.P., Bayma, T.: Computer networks and scientific work. Soc. Stud. Sci. 26, 661–703 (1996)

    Article  Google Scholar 

  22. Wellman, B., Gulia, M.: Virtual communities as communities. In: Smith, M.A., Kollock, P. (eds.) Communities in Cyberspace.. Routledge, New York (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie M. Birkholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Birkholz, J.M., Wang, S., Groth, P., Magliacane, S. (2013). Who Are We Talking About? Identifying Scientific Populations Online. In: Li, J., Qi, G., Zhao, D., Nejdl, W., Zheng, HT. (eds) Semantic Web and Web Science. Springer Proceedings in Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6880-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6880-6_21

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6879-0

  • Online ISBN: 978-1-4614-6880-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics