Abstract
Let (X,Y) be a pair of random variables. X takes values in a Borel set A, A⊂ Rp, whereas Y takes values in R. Let f be the marginal Leb. esgue density of X. Based on a sample (X1, Y1),…, (Xn, Yn) of independent observations of (X,Y) we wish to estimate the regression r of Y on X, i.e
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahmad, I. A. and Lin, P. E., “Nonparametric sequential estimation of a multiple regression function,” Bull. Math. Statist., vol. 17, pp. 63–75, 1976.
Čencov, N. N., “Evaluation of an unknown distribution density from observations,” Soviet Math., vol. 3, pp. 1559–1562, 1962.
Devroye, L. P., “Universal consistency in nonparametric regression and nonparametric discrimination,” Technical Report School of Computer Science, McGill university, 1978.
Devroye, 1. P. and Wagner, T. J., “On the L1 convergence of kernel estimators of regression functions with applications in discrimination,” to appear in Z. Wahrscheinlichkeitstheorie und Verw. Gebiete.
Greblicki, W., “Asymptotically optimal probabilistic algorithms for pattern recognition and identification,” Scientific Papers of the Institute of Technical Cybernetics of Wroclaw Technical University Wo. 18, Series: Monographs No. 3, Wroclaw 1974.
Greblicki, W., “Asymptotically optimal pattern recognition procedures with density estimates,” IEEE Trans. Inform. Theory, vol. IT-24, pp. 250–251, 1978.
Loéve, M., “Probability Theory I,” 4th Edition, Springer-Verlag, 1977.
Sansone, G., “Orthogonal functions,” Interscience Publishers Inc., New York, 1959.
Szegö, G., “Orthogonal polynomials,” Amer. Math. Soc. Coll. Publ., vol. 23, 1959.
Tucker, H. G., “A graduate course in probability,” Academic Press, 1967.
Wertz, W. and Schneider, B., “Statistical density estimation: a bibliography,” Intexnat. Statist. Rev., vol. 47, pp. 155–175, 1979.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 1981 Springer-Verlag New York Inc.
About this paper
Cite this paper
Rutkowski, L. (1981). Sequential Estimates of a Regression Function by Orthogonal Series with Applications in Discrimination. In: The First Pannonian Symposium on Mathematical Statistics. Lecture Notes in Statistics, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5934-3_21
Download citation
DOI: https://doi.org/10.1007/978-1-4612-5934-3_21
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-90583-9
Online ISBN: 978-1-4612-5934-3
eBook Packages: Springer Book Archive