Abstract
Nontraditional environments offer a variety of methodological challenges when exploring cooperation under very specific contextual conditions. We understand contexts as challenging when they exhibit very specific/unique characteristics that need to be explored beyond traditional and already better-understood working/office settings. Moreover, these challenging environments are contexts in which human-human interaction mediated by computing systems and human-machine collaboration is hard to observe. In this paper, we focus on two challenging environments: the highly context-dependent automotive environment and the complex context of a semiconductor factory. Both contexts offer potential in a variety of ways for novel computer-supported cooperative work research, such as driver/codriver cooperation and operator-robot cooperation. In this book chapter, two exemplary contexts “car” and “factory” will be characterized in terms of (1) research challenges posed by the context, (2) performed exploratory studies, and (3) methodological implications for the two exemplary contexts, as well as for CSCW and HCI research practices in general.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The company has directed its European subsidiaries towards the development and production of new technologies, which results in short production cycles and a high degree of flexibility within the whole production system, which increases its complexity for external observers.
References
Alt, F., Kern, D., Schulte, F., Pfleging, B., Shirazi, A. S., & Schmidt, A. (2010). Enabling micro-entertainment in vehicles based on context information. In Proceedings of the 2nd international conference on automotive user interfaces and interactive vehicular applications, Automotive UI ’10 (pp. 117–124). New York: ACM.
Auramäki, E., Robinson, M., Aaltonen, A., Kovalainen, M., Liinamaa, A., & Tuuna-Väiskä, T. (1996, November). Paperwork at 78kph. In Proceedings of the 1996 ACM conference on computer supported cooperative work (pp. 370–379). ACM.
Ballas, J., Heitmeyer, C., & Perez, M. (1992). Direct manipulation and intermittent automation in advanced cockpits. Technical report, DTIC Document.
Bellotti, F., Gloria, D., Montanari, R., Dosio, N., & Morreale, D. (2005). Comunicar: Designing a multimedia, context-aware human-machine interface for cars. Cognition, Technology and Work, 7(1), 36–45.
Ben-Elia, E., & Ettema, D. (2011). Changing commuters’ behavior using rewards: A study of rush-hour avoidance. Transportation Research Part F: Traffic Psychology and Behaviour, 14(5), 354–368.
Beyer, H., & Holtzblatt, K. (1998). Contextual design: Defining customer-centered systems. San Francisco: Morgan Kaufmann Publishers. ISBN 1558604111.
Blomberg, J., Giacomi, J., Mosher, A., & Swenton-Wall, P. (1993). Ethnographic field methods and their relation to design. In D. Dchuler & A. Namioka (Eds.), Participatory design: Principles and practices. Hillsdale: Erlbaum.
Brooks, R. (1991). Comparative task analysis: An alternative direction for human-computer interaction science. In J. Carroll (Ed.), Designing interaction: Psychology at the human computer interface. Cambridge: Cambridge University Press.
Brown, B., & Laurier, E. (2012). The normal natural troubles of driving with GPS. In Proceedings of CHI 2012 (pp. 1621–1630). New York: ACM.
Buchner, R., Wurhofer, D., Weiss, A., & Tscheligi, M. (2012). User experience of industrial robots over time. In Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction (pp. 115–116). New York: ACM.
Buchner, R., Wurhofer, D., Weiss, A., & Tscheligi, M. (2013a). Robots in time: How user experience in human-robot interaction changes over time. In Proceedings of international conference on social robotics (pp. 138–147). Bristol: ICSR.
Buchner, R., Kluckner, P. K., Weiss, A., & Tscheligi, M. (2013b). Assisting maintainers in the semiconductor factory: Iterative co-design of a mobile interface and a situated display. In Proceedings of the 12th international conference on mobile and Ubiquitous Multimedia (MUM ’13). New York: ACM.
Chamberlain, A., Crabtree, A., Rodden, T., Jones, M., & Rogers, Y. (2012). Research in the wild: Understanding ‘in the wild’ approaches to design and development. In Proceedings of the designing interactive systems conference, DIS ’12 (pp. 795–796). New York: ACM.
Crabtree, A. (1998). Ethnography in participatory design. In Proceedings of participatory design conference (PDC’98) (pp. 93–105). Palo Alto: CPSR.
Crabtree, A., Rodden, T., Tolmie, P., & Button, G. (2009). Ethnography considered harmful. In Proceedings of the 27th international conference on human factors in computing systems, CHI ’09 (pp. 879–888). New York: ACM.
D’Souza, M., & Greenstein, J. S. (2003, October). Listening to users in a manufacturing organization: A context-based approach to the development of a computer-supported collaborative work system. International Journal of Industrial Ergonomics, 32(4), 251–264.
Dey, A. K. (2001, February). Understanding and using context. Personal and Ubiquitous Computing, 5(1), 4–7.
Dourish, P. (2006). Implications for design. In Proceedings of CHI’06 (pp. 541–550). Montréal, Canada. New York: ACM Press.
Esbjörnsson, M., Juhlin, O., & Weilenmann, A. (2007). Drivers using mobile phones in traffic: An ethnographic study of interactional adaptation. International Journal of Human-Computer Interaction, 22(1–2), 37–58.
Fallman, D. (2003). Enabling physical collaboration in industrial settings by designing for embodied interaction CLIHC ’03. In Proceedings of the Latin American conference on human-computer interaction (pp. 41–51). New York: ACM.
Fetterman, D. M. (1998). Ethnography: Step by step (2nd ed.). Thousand Oaks: Sage Publications.
Forlizzi, J., Barley, W. C., & Seder, T. (2010). Where should I turn: Moving from individual to collaborative navigation strategies to inform the interaction design of future navigation systems. In Proceedings of CHI 2010 (pp. 1261–1270). New York: ACM.
Fuchsberger, V., Murer, M., Aslan, I., Meschtscherjakov, A., Tscheligi, M., Sundström, P., & Petrelli, D. (2014). Contextual constraints: Consequences for interaction design. Workshop at DIS’14: Conference on designing interactive systems, Vancouver.
Geiser, G. (1985). Man machine interaction in vehicles. ATZ, 87, 74–77.
Gellatly, A., Hansen, C., Highstorm, M., & Weiss, J. (2010). Journey: General motors’ move to incorporate contextual design into its next generation of automotive HCI design. In Proceedings of AUI 2010. New York: ACM.
Greenberg, S., & Buxton, B. (2008). Usability evaluation considered harmful (some of the time). In Proceedings of the twenty-sixth annual SIGCHI conference on human factors in computing systems (pp. 111–120). New York: ACM.
Gridling, N., Sundstroem, P., Meschtscherjakov, A., Wilfinger, D., & Tscheligi, M. (2013). Come drive with me: An ethnographic study of driver-passenger pairs to inform future in-car assistance. In CSCW ’13 proceedings of the ACM 2013 conference on computer supported cooperative work companion. New York: ACM.
Hampton, P., & Langham, M. (2005). A contextual study of police car telematics: The future of in-car information systems. Ergonomics, 48(2), 109–118.
Hanowski, R. J., Olson, R. L., Hickman, J. S., & Dingus, T. A. (2006). The 100-car naturalistic driving study: A descriptive analysis of light vehicle-heavy vehicle interactions from the light vehicle driver’s perspective. Technical report, Virginia Tech Transportation Institute.
Hayes, G. R. (2011, July). The relationship of action research to human-computer interaction. ACM Transactions on Computer-Human Interaction, 18, 1–20.
Heyer, C. (2010). Investigations of Ubicomp in the oil and gas industry. In Proceedings of the 12th ACM international conference on Ubiquitous computing (pp. 61–64). New York: ACM.
Heyer, C., Wagner, I., Tellioglu, H., Balka, E., Simone, C., & Ciolfi, L. (Eds.). (2009). High-Octane Work: The oil and gas workplace ECSCW 2009 (pp. 363–382). London: Springer.
Hoffman, G., Gal-Oz, A., Shlomi, D., & Zuckerman, O. (2013). In-car game design for children: Child vs. parent perspective. In Proceedings of the 12th international conference on interaction design and children (pp. 112–119). New York: ACM.
Hutchins, E., & Klausen, T. (1996). Distributed cognition in an airline cockpit. In Cognition and communication at work (pp. 15–34). New York: Cambridge University Press.
Inbar, O., & Tractinsky, N. (2011). Make a trip an experience: Sharing in-car information with passengers. In Proceedings of CHI 2011 (pp. 1243–1248). New York: ACM.
Johnson, R., Rogers, Y., van der Linden, J., & Bianchi-Berthouze, N. (2012). Being in the thick of in-the-wild studies: The challenges and insights of researcher participation. In Proceedings of the 2012 ACM annual conference on human factors in computing systems, CHI ’12 (pp. 1135–1144). New York: ACM.
Juhlin, O. (1999). Traffic Behavior as social interaction – Implications for the design of the artificial driver. In Proceedings of ITS 1999. Crowthorne: Transport Research Laboratory.
Kern, D., & Schmidt, A. (2007). Gas station flash survey – A method for interviewing drivers. In T. Paul-Stueve (Ed.), Mensch & Computer 2007 Workshopband. Weimar: Verlag der Bauhaus-Universität Weimar.
Kluckner, P. M., Buchner, R., Weiss, A., & Tscheligi, M. (2012). Repair now: Collaboration between maintainers, operators and equipment in a cleanroom. In Proceedings of the ACM conference on computer supported cooperative work, CSCW ’12. New York: ACM.
Kluckner, P. M., Buchner, R., Weiss, A., & Tscheligi, M. (2013). Collaborative reporting tools: An analysis of maintenance activities in a semiconductor factory. In Proceedings of the 2013 international conference on collaboration technologies and systems (CTS) (pp. 508–515). Piscataway: IEEE.
Kristensen, M., Kyng, M., & Palen, L. (2006). Participatory design in emergency medical service: Designing for future practice. In Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’06 (pp. 161–170). New York: ACM.
Law, E. L.-C., Bevan, N., Christou, G., Springett, M., & Lárusdóttir, M. (Eds.). (2008). Proceedings of the international workshop on meaningful measures: Valid user experience measurement (VUUM), Reykjavik.
Lin, C.-H., Hwang, S.-L., & Min-Yang Wang, E. (2009). Design for usability on supply chain management systems implementation. Human Factors and Ergonomics in Manufacturing & Service Industries, 19, 378–403.
Magnusson, C., Larsson, A., Warell, A., & Eftring, H. (2011). Key scenarios, contextual walkthrough and context trails – Tools for better and more accessible mobile designs. In Proceedings of the 13th IFIP TC13 conference on human-computer interaction, INTERACT 2011, Workshop on Mobile Accessibility, Lisbon.
Martin, N., Sprague, M.A., Wall, P., Watts-Perotti, J. (2007). Giving voice to print production facility workers: Representing actual work practices in the streamlining of a labor intensive production print job. In Ethnographic Praxis in industry conference proceedings 2007 (1), pp. 163–180. Keystone.
Mechtscherjakov, A., Kluckner, P., Pöhr, F., Reitberger, W., Weiss, A., Tscheligi, M., Hohenwarter, K., & Oswald, P. (2011). Ambient persuasion in the factory: The case of the operator guide. In Advanced semiconductor manufacturing conference (ASMC), 2011 22nd annual IEEE/SEMI (pp. 1–6). Piscataway: IEEE.
Meschtscherjakov, A., Reitberger, W., Poehr, F., & Tscheligi, M. (2010). The operator guide: An ambient persuasive interface in the factory. In Proceedings of the AmI, 2010 (pp. 117–126). Berlin Heidelberg: Springer.
Meschtscherjakov, A., Wilfinger, D., Osswald, S., Gridling, N., & Tscheligi, M. (2012). Trip experience sampling: Assessing driver experience. In The field. Proceedings of the 3rd international conference on automotive user interfaces and interactive vehicular applications. AutomotiveUI ’12. New York: ACM.
Millen, D. R. (2000, August). Rapid ethnography, time deepening strategies for HCI field research. In Conference proceedings on designing interactive systems: Processes, practices, methods, and techniques (pp. 280–286). New York: ACM.
Nardi, B. (1992, August 4–8). Studying context: A comparison of activity theory, situated action models and distributed cognition. In Proceedings East–West conference on human-computer interaction (pp. 352–359). St. Petersburg, Russia.
Neureiter, K., Meschtscherjakov, A., Wilfinger, D., & Tscheligi, M. (2011). Investigating the usage of multifunctional rotary knobs in the center stack with a contextual inquiry. In Proceedings of EA AUI 2011. New York: ACM.
Newman, W. (2009). The status of ethnography in systems design. In Panel CHI’09 (Boston, MA). New York: ACM
Osswald, S., Buchner, R., Weiss, A. & Tscheligi, M. (2012). Using participatory design to investigate technology usage in the cleanroom of a semiconductor factory “The message in the bottle: Best practices for transferring the knowledge from qualitative user studies”. Workshop at the ACM conference on designing interactive systems, Newcastle.
Osswald, S., Sundstroem, P., & Tscheligi, M. (2013). The front seat passenger: How to transfer qualitative findings into design. International Journal of Vehicular Technology, 13, 14.
Phithakkitnukoon, S., Veloso, M., Bento, C., Biderman, A., & Ratti, C. (2010). Taxi-aware map: Identifying and predicting vacant taxis in the city. In Proceedings of AmI’10 (pp. 86–95). Berlin/Heidelberg: Springer.
Powdermaker, H. (1966). Stranger and friend: The way of an anthropologist. New York: W. W. Norton & Company Inc.
Ramirez, L., Dyrks, T., Gerwinski, J., Betz, M., Scholz, M., & Wulf, V. (2012). Landmarke: An ad hoc deployable ubicomp infrastructure to support indoor navigation of firefighters personal and ubiquitous computing (Vol. 16, pp. 1025–1038). London: Springer.
Randall, D. W., Harper, R. H. R., & Rouncefield, M. (2007). Fieldwork for design – Theory and practice. Computer supported cooperative work (pp. i–xi). New York: Springer, 1–330. ISBN 978-1-84628-767-1.
Rattenbury, T., Nafus, D., & Anderson, K. (2008). Plastic: A metaphor for integrated technologies. In Proceedings of the 10th international conference on Ubiquitous computing (pp. 232–241). New York: ACM.
Robinson, M., Kovalainen, M., & Auramäki, E. (2000, January). Diary as dialogue in papermill process control. Communications of the ACM, 43(1), 65–70.
Rode, J. A. (2011). Reflexivity in digital anthropology. In Proceedings of CHI 2011 (pp. 123–132). New York: ACM.
Rogers, Y. (2011). Interaction design gone wild: Striving for wild theory. Interactions, 18(4), 58–62.
Roto, V., Väätäjä, H., Jumisko-Pyykkö, S., & Väänänen-Vainio-Mattila, K. (2011, September). Best practices for capturing context in user experience studies in the wild. In Proceedings of the 15th international academic MindTrek conference: Envisioning future media environments (pp. 91–98). ACM.
Simonsen, J., & Kensing, F. (1997). Using ethnography in contextural design. Communications of the ACM, 40(7), 82–88.
Strasser, E., Weiss, A., Osswald, S., Grill, T., & Tscheligi, M. (2012). Combining implicit and explicit methods for the evaluation of an ambient persuasive factory display. In AmI2012: Proceedings of the 6th European conference on ambient intelligence. Springer, Currently Submitted.
Suchman, L. A. (1987). Plans and situated actions: The problem of human-machine communication. Cambridge: Cambridge University Press.
Viitanen, J. (2011). Contextual inquiry method for user-centred clinical it system design. Studies in Health Technology and Informatics, 169, 965–969.
Wax, R. H. (1971). Doing fieldwork: Warning and advice. University of Chicago Press.
Werner, O., Schoepfle, G. M., & Ahern, J. (1987). Systematic fieldwork (Vol. 1). Newbury Park: Sage.
Wilfinger, D., Meschtscherjakov, A., Murer, M., Osswald, S., & Tscheligi, M. (2011). Are we there yet? A probing study to inform design for the rear seat of family cars. In Proceedings of the 13th IFIP TC 13 international conference on human-computer interaction – Volume Part II (pp. 657–674). Heidelberg/New York: Springer.
Zachhuber, D., Grill, T., & Tscheligi, M. (2012). Contextual Wizard of Oz – A framework combining contextual rapid prototyping and the Wizard of Oz method. In Proceedings of AMI 2012. New York: ACM.
Acknowledgments
The authors would like to thank Martin Murer, Katja Neureiter, Axel Baumgartner, Wolfgang Reitberger, and Florian Pöhr for their contributions to the research presented in this paper. The financial support by the Federal Ministry of Economy, Family and Youth and the National Foundation for Research, Technology and Development is gratefully acknowledged (Christian Doppler Laboratory for “Contextual Interfaces”).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag London
About this chapter
Cite this chapter
Weiss, A. et al. (2015). Exploring Challenging Environments: Contextual Research in the Car and the Factory Through an HCI Lens. In: Wulf, V., Schmidt, K., Randall, D. (eds) Designing Socially Embedded Technologies in the Real-World. Computer Supported Cooperative Work. Springer, London. https://doi.org/10.1007/978-1-4471-6720-4_12
Download citation
DOI: https://doi.org/10.1007/978-1-4471-6720-4_12
Publisher Name: Springer, London
Print ISBN: 978-1-4471-6719-8
Online ISBN: 978-1-4471-6720-4
eBook Packages: Computer ScienceComputer Science (R0)