HIRO: Multi-fingered Haptic Interface Robot and Its Medical Application Systems | SpringerLink
Skip to main content

HIRO: Multi-fingered Haptic Interface Robot and Its Medical Application Systems

  • Chapter
Multi-finger Haptic Interaction

Abstract

This chapter presents the design and characteristics of a five-fingered haptic interface robot named HIRO and its medical application systems. The aim of the development of HIRO is to provide a high-precision three-directional force at the five human fingertips. HIRO consists of a 15-degrees-of-freedom (DOF) haptic hand, a 6-DOF interface arm, and a control system. The haptic interface can be used in a large workspace and can provide multipoint contact between the user and a virtual environment. Three medical application systems using HIRO, a hand rehabilitation support system, a medical training system using plural devices, and a breast palpation training system, are introduced. Furthermore, a hand haptic interface for an advanced palpation training system, which consists of a multi-fingered haptic interface for fingertips and 1-dimensional force display for finger pads, is presented. These systems show the great potential of HIRO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Magnenat-Thalmann, N., & Bonanni, U. (2006). Haptics in virtual reality and multimedia. IEEE Multimedia, 13(3), 6–11.

    Article  Google Scholar 

  2. Najdovski, Z., & Nahavandi, S. (2008). Extending haptic device capability for 3D virtual grasping. In Haptics: perception, devices and scenarios (pp. 494–503). Proc. sixth int. conf. EuroHaptics 2008. Berlin: Springer.

    Chapter  Google Scholar 

  3. Kawasaki, H., & Hayashi, T. (1993). Force feedback glove for manipulation of virtual objects. Journal of Robotics and Mechatronics, 5(1), 79–84.

    Google Scholar 

  4. Bouzit, M., Burdea, G., Popescu, G., & Boian, R. (2002). The rutgers master II—new design force-feedback glove. IEEE/ASME Transactions on Mechatronics, 7(2), 256–263.

    Article  Google Scholar 

  5. Fontana, M., Dettori, D., Salsedo, F., & Bergamasco, M. (2008). Mechanical design of a novel hand exoskeleton for accurate force displaying. In Proc. of ICRA 2009 (pp. 1074–1709).

    Google Scholar 

  6. Website of Immersion Corporation. http://www.immersion.com/3d/products/cyber_force.php.

  7. Inaba, G., & Fujita, K. (2006). A pseudo-force-feedback device by fingertip tightening for multi-finger object manipulation. In Proc. of EuroHaptics 2006.

    Google Scholar 

  8. Ueda, Y., & Maeno, T. (2004). Development of a mouse-shaped haptic device with multiple finger inputs. In Proc. of IROS 2004 (pp. 2886–2891).

    Google Scholar 

  9. Yoshikawa, T., & Nagara, A. (2000). Development and control of touch and force display devices for haptic interface. In Proc. of SYROCO’00 (pp. 427–432).

    Google Scholar 

  10. Adachi, Y., et al. (2002). Development of a haptic device for multi fingers by macro-micro structure. Journal of the Robotics Society of Japan, 20(7), 725–733.

    Article  MathSciNet  Google Scholar 

  11. Walairacht, S., Ishii, M., Koike, Y., & Sato, M. (2001). Two-handed multi-fingers string-based haptic interface device. IEICE Transactions on Information and Systems, E84D(3), 365–373.

    Google Scholar 

  12. Montoy, M., Oyarzabal, M., Ferre, M., Campos, A., & Barrio, J. (2008). MasterFinger: multi-finger haptic interface for collaborative environment. In Proc. of EuroHaptics 2008 (pp. 411–419).

    Google Scholar 

  13. Kawasaki, H., & Mouri, T. (2007). Design and control of five-fingered haptic interface opposite to human hand. IEEE Transactions on Robotics, 23(5), 909–918.

    Article  Google Scholar 

  14. Yokokohji, Y., Muramori, N., Sato, Y., Kimura, T., & Yoshikawa, T. (2004). Design and path planning of an encountered-type haptic display for multiple fingertip contacts based on the observation of human grasping behavior. In Proc. of ICRA 2004 (pp. 1986–1991).

    Google Scholar 

  15. Nakagawara, S., Kajimoto, H., Kawakami, N., Tachi, S., & Kawabuchi, I. (2005). An encounter-type multi-fingered master hand using circuitous joints. In Proc. of ICRA 2005 (pp. 2667–2672).

    Google Scholar 

  16. Dovat, L., Lambercy, O., Gassert, R., Maeder, T., Milner, T., Leong, T. C., & Burdet, E. (2008). HandCARE: a cable-actuated rehabilitation system to train hand function after stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(6), 582–591.

    Article  Google Scholar 

  17. Connelly, L., Jia, Y., Toro, M., Stoykov, M. E., Kenyon, R., & Kamper, D. (2010). A pneumatic glove and immersive virtual reality environment for hand rehabilitation training after stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(5), 551–559.

    Article  Google Scholar 

  18. Okamura, A. M., Webster, R. J. III, Nolin, J. T., Johonson, K. W., & Jafry, H. (2003). The haptic scissors: cutting in virtual environments. In Proc. of ICRA 2003 (pp. 828–833).

    Google Scholar 

  19. Rosenberg, L. B., & Stredney, D. (1996). A haptic interface for virtual simulation of endoscopic surgery. In H. Sieburg et al. (Eds.), Health care in the information age. Amsterdam: IOS Press/Ohmsha.

    Google Scholar 

  20. Langrana, N., Burdea, G., Ladeji, J., & Dinsmore, M. (1997). Human performance using virtual reality tumor palpation simulation. Computers & Graphics, 21(4), 451–458.

    Article  Google Scholar 

  21. Howe, R. D., Peine, W. J., Kontarinis, D. A., & Son, J. S. (1995). Remote palpation technology. IEEE Engineering in Medicine and Biology Magazine, 318–323.

    Google Scholar 

  22. Endo, T., Kawasaki, H., Mouri, T., Ishigure, Y., Shimomura, H., Matsumura, M., & Koketsu, K. (2011). Five-fingered haptic interface robot: HIRO III. IEEE Transactions on Haptics, 4(1), 14–27.

    Article  Google Scholar 

  23. Hioki, M., Kawasaki, H., Sakaeda, H., Nishimoto, Y., & Mouri, T. (2011). Finger rehabilitation support system using a multifingered haptic interface controlled by a surface electromyogram. Journal of Robotics, 2011, 10.

    Article  Google Scholar 

  24. Kawasaki, H., Mouri, T., & Ikenohata, S. (2007). Multi-fingered haptic interface robot handling plural tool devices. In Proc. of world haptics 2007 (pp. 397–402).

    Google Scholar 

  25. Endo, T., Tanimura, S., & Kawasaki, H. (2011). Development of a surgical knife device for a multi-fingered haptic interface robot. In Preprints of the 18th IFAC world congress (pp. 6460–6465).

    Google Scholar 

  26. Endo, T., Tanimura, S., & Kawasaki, H. (2011). Development of a tweezers-type device for a multi-fingered haptic interface robot. In Proc. of 2011 IEEE/SICE international symposium on system integration (SII2011) (pp. 1006–1011).

    Chapter  Google Scholar 

  27. Daniulaitis, V., Alhalabi, M. O., Kawasaki, H., Tanaka, Y., & Hori, T. (2004). Medical palpation of deformable tissue using physics-based model for haptic interface RObot (HIRO). In Proc. of IROS 2004 (pp. 3907–3911).

    Google Scholar 

  28. Alharabi, M. O., Daniulaitis, V., Kawasaki, H., & Hori, T. (2005). Medical training simulation for palpation of subsurface tumor using HIRO. In Proc. world haptics 2005 (pp. 623–624).

    Google Scholar 

  29. Kawasaki, H., Koide, S., Mouri, T., & Endo, T. (2010). Finger pad force display for hand haptic interface. In Proc. of 6th IEEE conference on automation science and engineering (CASE 2010) (pp. 374–379).

    Google Scholar 

  30. Kawasaki, H., Koide, S., Endo, T., & Mouri, T. (2012). Development of a hand haptic interface and its basic experimental evaluation. In Proc. of international symposium on innovations in intelligent systems and applications (INISTA 2012) (5 pp.).

    Google Scholar 

  31. Website of UAB Aksonas. http://robothand.eu/en/products/robotic_hands/.

  32. Website of Marutomi Seiko Co., Ltd. http://www.maru-tomi.co.jp/english/index_e.html.

  33. Endo, T., Kawachi, Y., Kawasaki, H., & Mouri, T. (2008). FPGA-based control for the wire-saving of five-fingered haptic interface. In M. Ferre (Ed.), Haptics: perception, devices and scenarios (pp. 536–542). Proc. sixth int’l conf. EuroHaptics 2008. Berlin: Springer.

    Chapter  Google Scholar 

  34. Carignan, C., & Liszka, M. (2005). Design of an arm exoskeleton with scapula motion for shoulder rehabilitation. In Proc. of ICRA 2005 (pp. 524–531).

    Google Scholar 

  35. Gupta, A., & O’Malley, M. K. (2006). Design of a haptic arm exoskeleton for training and rehabilitation. IEEE/ASME Transactions on Mechatronics, 11(3), 280–289.

    Article  Google Scholar 

  36. Mahoney, R. M., van der Loos, H. F. M., Lum, P. S., & Burgar, C. (2003). Robotic stroke therapy assistant. Robotica, 21, 33–44.

    Article  Google Scholar 

  37. Oblak, J., Cikajlo, I., & Matjacic, Z. (2010). Universal haptic drive: a robot for arm and wrist rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(3), 239–302.

    Article  Google Scholar 

  38. Kawasaki, H., Ito, S., Ishigure, Y., Nishimoto, Y., Aoki, T., Mouri, T., Sakaeda, H., & Abe, M. (2007). Development of hand motion assist robot for rehabilitation therapy by patient self-motion control. In Proc. of IEEE ICORR 2007 (pp. 234–240).

    Google Scholar 

  39. Ueki, S., Kawasaki, H., Ito, S., Nishimoto, Y., Abe, M., Aoki, T., Ishigure, Y., Ojika, T., & Mouri, T. (2011). Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy. IEEE/ASME Transactions on Mechatronics, 17(1), 136–146.

    Article  Google Scholar 

  40. Freeman, C., Burridge, J., Chappell, P., Lewin, P., & Rogers, E. (2009). Upper limb rehabilitation of stroke participants using electrical stimulation: changes in tracking and EMG timing. In Proc. of IEEE ICORR 2009 (pp. 289–294).

    Google Scholar 

  41. Hu, X. L., Tong, K. Y., Song, R., Zheng, X. J., & Leung, W. W. F. (2009). A randomized controlled trial on the recovery process of wrist rehabilitation assisted by electromyography (EMG)-driven robot for chronic stroke. In Proc. of IEEE ICORR 2009 (pp. 289–294).

    Google Scholar 

  42. Hioki, M., & Kawasaki, H. (2009). Estimation of finger joint angles from sEMG using a recurrent neural network with time-delayed input vectors. In Proc. of IEEE ICORR 2009 (pp. 289–294).

    Google Scholar 

  43. Bu, N., Okamoto, M., & Tsuji, T. (2009). A hybrid motion classification approach for EMG-based human-robot interface using Bayesian and neural networks. IEEE Transactions on Robotics, 25(3), 502–511.

    Article  Google Scholar 

  44. Oskoei, M. A., & Hu, H. (2007). Myoelectric control system—a survey. Biomedical Signal Processing and Control, 2, 275–294.

    Article  Google Scholar 

  45. Honma, S., & Wakamatsu, H. (2004). Cutting moment analysis of materials by the saw for force display system. Transactions of the Virtual Reality Society of Japan, 9(3), 319–326 (in Japanese).

    Google Scholar 

  46. Webster, R. J. III, Memisevic, J., & Okamura, A. M. (2005). Design considerations for robotic needle steering. In Proc. of the 2005 IEEE international conference on robotics and automation (pp. 3599–3605).

    Google Scholar 

  47. Tzafestas, C. S., Christopoulos, D., & Birbas, K. (2006). Haptic display improves training and skill assessment performance in a virtual paracentesis simulator: a pilot evaluation study. In Proc. of euro haptics.

    Google Scholar 

  48. Ota, D., Loftin, B., Saito, T., Lea, R., & Keller, J. (1995). Virtual reality in surgical education. Computers in Biology and Medicine, 25(2), 127–137.

    Article  Google Scholar 

  49. Burdea, G. (1996). Force and touch feedback for virtual reality. New York: Wiley.

    Google Scholar 

  50. Langrana, N., Burdea, G., Ladeji, J., & Dinsmore, M. (1997). Human performance using virtual reality tumor palpation simulation. Computers & Graphics, 21(4), 451–458.

    Article  Google Scholar 

  51. Cotin, S., Delingette, H., & Ayache, N. (1999). Real-time elastic deformations of soft tissues for surgery simulation. IEEE Transactions on Visualization and Computer Graphics, 5(1), 62–73.

    Article  Google Scholar 

  52. Kobayashi, M., Endo, T., Goto, T., & Kawasaki, H. (2010). Transmission of force and position information using a hand image and a multi-fingered haptic device. In Proc. of SI2010 (pp. 190–191) (in Japanese).

    Google Scholar 

  53. Johanson, R. S., & Vallbo, A. B. (1979). Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. Journal of Physiology, 286, 283–300.

    Google Scholar 

  54. Grieve, T., Sun, Y., Hollerbach, J. M., & Mascaro, S. A. (2009). 3-d force control on the human fingerpad using a magnetic levitation device for fingernail imaging calibration. In Proc. of 3rd joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator system (pp. 411–416).

    Chapter  Google Scholar 

  55. Minamizawa, K., Fukamachi, S., Kajimoto, H., Kawakami, N., & Tachi, S. (2008). Wearable haptic display to present mass and internal dynamics of virtual objects. Transactions of the Virtual Reality Society of Japan, 13(1), 15–24.

    Google Scholar 

  56. Aoki, T., Mitake, H., Hasegawa, S., & Sato, M. (2009). Wearable haptic device to present contact sensation based on cutaneous sensation using thin wires. Transactions of the Virtual Reality Society of Japan, 14(3), 421–428.

    Google Scholar 

  57. Koo, I. M., Jung, K., Koo, J. C., Nam, J., & Lee, Y. K. (2008). Development of soft-actuator based wearable tactile display. IEEE Transactions on Robotics, 24(3), 548–558.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Strategic Information and Communications R&D Promotion Program (SCOPE) of the Ministry of Internal Affairs and Communications and by a Grant-in-Aid for Scientific Research from JSPS, Japan ((B) No. 23360184).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Kawasaki, H., Endo, T., Mouri, T., Ishigure, Y., Daniulaitis, V. (2013). HIRO: Multi-fingered Haptic Interface Robot and Its Medical Application Systems. In: Galiana, I., Ferre, M. (eds) Multi-finger Haptic Interaction. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-5204-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5204-0_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5203-3

  • Online ISBN: 978-1-4471-5204-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics