Abstract
This chapter presents the design and characteristics of a five-fingered haptic interface robot named HIRO and its medical application systems. The aim of the development of HIRO is to provide a high-precision three-directional force at the five human fingertips. HIRO consists of a 15-degrees-of-freedom (DOF) haptic hand, a 6-DOF interface arm, and a control system. The haptic interface can be used in a large workspace and can provide multipoint contact between the user and a virtual environment. Three medical application systems using HIRO, a hand rehabilitation support system, a medical training system using plural devices, and a breast palpation training system, are introduced. Furthermore, a hand haptic interface for an advanced palpation training system, which consists of a multi-fingered haptic interface for fingertips and 1-dimensional force display for finger pads, is presented. These systems show the great potential of HIRO.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Magnenat-Thalmann, N., & Bonanni, U. (2006). Haptics in virtual reality and multimedia. IEEE Multimedia, 13(3), 6–11.
Najdovski, Z., & Nahavandi, S. (2008). Extending haptic device capability for 3D virtual grasping. In Haptics: perception, devices and scenarios (pp. 494–503). Proc. sixth int. conf. EuroHaptics 2008. Berlin: Springer.
Kawasaki, H., & Hayashi, T. (1993). Force feedback glove for manipulation of virtual objects. Journal of Robotics and Mechatronics, 5(1), 79–84.
Bouzit, M., Burdea, G., Popescu, G., & Boian, R. (2002). The rutgers master II—new design force-feedback glove. IEEE/ASME Transactions on Mechatronics, 7(2), 256–263.
Fontana, M., Dettori, D., Salsedo, F., & Bergamasco, M. (2008). Mechanical design of a novel hand exoskeleton for accurate force displaying. In Proc. of ICRA 2009 (pp. 1074–1709).
Website of Immersion Corporation. http://www.immersion.com/3d/products/cyber_force.php.
Inaba, G., & Fujita, K. (2006). A pseudo-force-feedback device by fingertip tightening for multi-finger object manipulation. In Proc. of EuroHaptics 2006.
Ueda, Y., & Maeno, T. (2004). Development of a mouse-shaped haptic device with multiple finger inputs. In Proc. of IROS 2004 (pp. 2886–2891).
Yoshikawa, T., & Nagara, A. (2000). Development and control of touch and force display devices for haptic interface. In Proc. of SYROCO’00 (pp. 427–432).
Adachi, Y., et al. (2002). Development of a haptic device for multi fingers by macro-micro structure. Journal of the Robotics Society of Japan, 20(7), 725–733.
Walairacht, S., Ishii, M., Koike, Y., & Sato, M. (2001). Two-handed multi-fingers string-based haptic interface device. IEICE Transactions on Information and Systems, E84D(3), 365–373.
Montoy, M., Oyarzabal, M., Ferre, M., Campos, A., & Barrio, J. (2008). MasterFinger: multi-finger haptic interface for collaborative environment. In Proc. of EuroHaptics 2008 (pp. 411–419).
Kawasaki, H., & Mouri, T. (2007). Design and control of five-fingered haptic interface opposite to human hand. IEEE Transactions on Robotics, 23(5), 909–918.
Yokokohji, Y., Muramori, N., Sato, Y., Kimura, T., & Yoshikawa, T. (2004). Design and path planning of an encountered-type haptic display for multiple fingertip contacts based on the observation of human grasping behavior. In Proc. of ICRA 2004 (pp. 1986–1991).
Nakagawara, S., Kajimoto, H., Kawakami, N., Tachi, S., & Kawabuchi, I. (2005). An encounter-type multi-fingered master hand using circuitous joints. In Proc. of ICRA 2005 (pp. 2667–2672).
Dovat, L., Lambercy, O., Gassert, R., Maeder, T., Milner, T., Leong, T. C., & Burdet, E. (2008). HandCARE: a cable-actuated rehabilitation system to train hand function after stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(6), 582–591.
Connelly, L., Jia, Y., Toro, M., Stoykov, M. E., Kenyon, R., & Kamper, D. (2010). A pneumatic glove and immersive virtual reality environment for hand rehabilitation training after stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(5), 551–559.
Okamura, A. M., Webster, R. J. III, Nolin, J. T., Johonson, K. W., & Jafry, H. (2003). The haptic scissors: cutting in virtual environments. In Proc. of ICRA 2003 (pp. 828–833).
Rosenberg, L. B., & Stredney, D. (1996). A haptic interface for virtual simulation of endoscopic surgery. In H. Sieburg et al. (Eds.), Health care in the information age. Amsterdam: IOS Press/Ohmsha.
Langrana, N., Burdea, G., Ladeji, J., & Dinsmore, M. (1997). Human performance using virtual reality tumor palpation simulation. Computers & Graphics, 21(4), 451–458.
Howe, R. D., Peine, W. J., Kontarinis, D. A., & Son, J. S. (1995). Remote palpation technology. IEEE Engineering in Medicine and Biology Magazine, 318–323.
Endo, T., Kawasaki, H., Mouri, T., Ishigure, Y., Shimomura, H., Matsumura, M., & Koketsu, K. (2011). Five-fingered haptic interface robot: HIRO III. IEEE Transactions on Haptics, 4(1), 14–27.
Hioki, M., Kawasaki, H., Sakaeda, H., Nishimoto, Y., & Mouri, T. (2011). Finger rehabilitation support system using a multifingered haptic interface controlled by a surface electromyogram. Journal of Robotics, 2011, 10.
Kawasaki, H., Mouri, T., & Ikenohata, S. (2007). Multi-fingered haptic interface robot handling plural tool devices. In Proc. of world haptics 2007 (pp. 397–402).
Endo, T., Tanimura, S., & Kawasaki, H. (2011). Development of a surgical knife device for a multi-fingered haptic interface robot. In Preprints of the 18th IFAC world congress (pp. 6460–6465).
Endo, T., Tanimura, S., & Kawasaki, H. (2011). Development of a tweezers-type device for a multi-fingered haptic interface robot. In Proc. of 2011 IEEE/SICE international symposium on system integration (SII2011) (pp. 1006–1011).
Daniulaitis, V., Alhalabi, M. O., Kawasaki, H., Tanaka, Y., & Hori, T. (2004). Medical palpation of deformable tissue using physics-based model for haptic interface RObot (HIRO). In Proc. of IROS 2004 (pp. 3907–3911).
Alharabi, M. O., Daniulaitis, V., Kawasaki, H., & Hori, T. (2005). Medical training simulation for palpation of subsurface tumor using HIRO. In Proc. world haptics 2005 (pp. 623–624).
Kawasaki, H., Koide, S., Mouri, T., & Endo, T. (2010). Finger pad force display for hand haptic interface. In Proc. of 6th IEEE conference on automation science and engineering (CASE 2010) (pp. 374–379).
Kawasaki, H., Koide, S., Endo, T., & Mouri, T. (2012). Development of a hand haptic interface and its basic experimental evaluation. In Proc. of international symposium on innovations in intelligent systems and applications (INISTA 2012) (5 pp.).
Website of UAB Aksonas. http://robothand.eu/en/products/robotic_hands/.
Website of Marutomi Seiko Co., Ltd. http://www.maru-tomi.co.jp/english/index_e.html.
Endo, T., Kawachi, Y., Kawasaki, H., & Mouri, T. (2008). FPGA-based control for the wire-saving of five-fingered haptic interface. In M. Ferre (Ed.), Haptics: perception, devices and scenarios (pp. 536–542). Proc. sixth int’l conf. EuroHaptics 2008. Berlin: Springer.
Carignan, C., & Liszka, M. (2005). Design of an arm exoskeleton with scapula motion for shoulder rehabilitation. In Proc. of ICRA 2005 (pp. 524–531).
Gupta, A., & O’Malley, M. K. (2006). Design of a haptic arm exoskeleton for training and rehabilitation. IEEE/ASME Transactions on Mechatronics, 11(3), 280–289.
Mahoney, R. M., van der Loos, H. F. M., Lum, P. S., & Burgar, C. (2003). Robotic stroke therapy assistant. Robotica, 21, 33–44.
Oblak, J., Cikajlo, I., & Matjacic, Z. (2010). Universal haptic drive: a robot for arm and wrist rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(3), 239–302.
Kawasaki, H., Ito, S., Ishigure, Y., Nishimoto, Y., Aoki, T., Mouri, T., Sakaeda, H., & Abe, M. (2007). Development of hand motion assist robot for rehabilitation therapy by patient self-motion control. In Proc. of IEEE ICORR 2007 (pp. 234–240).
Ueki, S., Kawasaki, H., Ito, S., Nishimoto, Y., Abe, M., Aoki, T., Ishigure, Y., Ojika, T., & Mouri, T. (2011). Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy. IEEE/ASME Transactions on Mechatronics, 17(1), 136–146.
Freeman, C., Burridge, J., Chappell, P., Lewin, P., & Rogers, E. (2009). Upper limb rehabilitation of stroke participants using electrical stimulation: changes in tracking and EMG timing. In Proc. of IEEE ICORR 2009 (pp. 289–294).
Hu, X. L., Tong, K. Y., Song, R., Zheng, X. J., & Leung, W. W. F. (2009). A randomized controlled trial on the recovery process of wrist rehabilitation assisted by electromyography (EMG)-driven robot for chronic stroke. In Proc. of IEEE ICORR 2009 (pp. 289–294).
Hioki, M., & Kawasaki, H. (2009). Estimation of finger joint angles from sEMG using a recurrent neural network with time-delayed input vectors. In Proc. of IEEE ICORR 2009 (pp. 289–294).
Bu, N., Okamoto, M., & Tsuji, T. (2009). A hybrid motion classification approach for EMG-based human-robot interface using Bayesian and neural networks. IEEE Transactions on Robotics, 25(3), 502–511.
Oskoei, M. A., & Hu, H. (2007). Myoelectric control system—a survey. Biomedical Signal Processing and Control, 2, 275–294.
Honma, S., & Wakamatsu, H. (2004). Cutting moment analysis of materials by the saw for force display system. Transactions of the Virtual Reality Society of Japan, 9(3), 319–326 (in Japanese).
Webster, R. J. III, Memisevic, J., & Okamura, A. M. (2005). Design considerations for robotic needle steering. In Proc. of the 2005 IEEE international conference on robotics and automation (pp. 3599–3605).
Tzafestas, C. S., Christopoulos, D., & Birbas, K. (2006). Haptic display improves training and skill assessment performance in a virtual paracentesis simulator: a pilot evaluation study. In Proc. of euro haptics.
Ota, D., Loftin, B., Saito, T., Lea, R., & Keller, J. (1995). Virtual reality in surgical education. Computers in Biology and Medicine, 25(2), 127–137.
Burdea, G. (1996). Force and touch feedback for virtual reality. New York: Wiley.
Langrana, N., Burdea, G., Ladeji, J., & Dinsmore, M. (1997). Human performance using virtual reality tumor palpation simulation. Computers & Graphics, 21(4), 451–458.
Cotin, S., Delingette, H., & Ayache, N. (1999). Real-time elastic deformations of soft tissues for surgery simulation. IEEE Transactions on Visualization and Computer Graphics, 5(1), 62–73.
Kobayashi, M., Endo, T., Goto, T., & Kawasaki, H. (2010). Transmission of force and position information using a hand image and a multi-fingered haptic device. In Proc. of SI2010 (pp. 190–191) (in Japanese).
Johanson, R. S., & Vallbo, A. B. (1979). Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. Journal of Physiology, 286, 283–300.
Grieve, T., Sun, Y., Hollerbach, J. M., & Mascaro, S. A. (2009). 3-d force control on the human fingerpad using a magnetic levitation device for fingernail imaging calibration. In Proc. of 3rd joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator system (pp. 411–416).
Minamizawa, K., Fukamachi, S., Kajimoto, H., Kawakami, N., & Tachi, S. (2008). Wearable haptic display to present mass and internal dynamics of virtual objects. Transactions of the Virtual Reality Society of Japan, 13(1), 15–24.
Aoki, T., Mitake, H., Hasegawa, S., & Sato, M. (2009). Wearable haptic device to present contact sensation based on cutaneous sensation using thin wires. Transactions of the Virtual Reality Society of Japan, 14(3), 421–428.
Koo, I. M., Jung, K., Koo, J. C., Nam, J., & Lee, Y. K. (2008). Development of soft-actuator based wearable tactile display. IEEE Transactions on Robotics, 24(3), 548–558.
Acknowledgements
This work was supported in part by the Strategic Information and Communications R&D Promotion Program (SCOPE) of the Ministry of Internal Affairs and Communications and by a Grant-in-Aid for Scientific Research from JSPS, Japan ((B) No. 23360184).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag London
About this chapter
Cite this chapter
Kawasaki, H., Endo, T., Mouri, T., Ishigure, Y., Daniulaitis, V. (2013). HIRO: Multi-fingered Haptic Interface Robot and Its Medical Application Systems. In: Galiana, I., Ferre, M. (eds) Multi-finger Haptic Interaction. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-5204-0_5
Download citation
DOI: https://doi.org/10.1007/978-1-4471-5204-0_5
Publisher Name: Springer, London
Print ISBN: 978-1-4471-5203-3
Online ISBN: 978-1-4471-5204-0
eBook Packages: Computer ScienceComputer Science (R0)