Toward Emotional Annotation of Multimedia Contents | SpringerLink
Skip to main content

Toward Emotional Annotation of Multimedia Contents

  • Chapter
  • First Online:
Social Media Retrieval

Part of the book series: Computer Communications and Networks ((CCN))

  • 3533 Accesses

Abstract

By annotating multimedia contents, users of a web resource can associate a word or a phrase (tag) with that resource such that other users can retrieve it by means of searching. Nowadays, tags play an important role in search and retrieval process in multimedia content sharing social networks. Explicit tagging refers to assigning tags directly in an explicit way such as typing. Implicit tagging, however, refers to assigning tags by observing users’ behaviors during exposure to multimedia contents. Among various kinds of information that can be obtained for the purpose of implicit tagging, emotional information about a given content is of great interest. In this chapter, we discuss various means of emotion recognition and emotional characterization, which can be used as tools for emotional tagging. A P300-based brain-computer interface system is proposed for the purpose of emotional tagging of multimedia content. We show that this system can successfully perform emotional tagging and naive users who have not participated in the training of the system can also use it efficiently. Furthermore, we present emotional annotating systems using multimedia content analysis and electroencephalogram signal processing and will compare them. Finally, a road map for developing a practical multimodal system for implicit emotional annotation of multimedia contents will be sketched out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This work is performed in the framework of European Community’s Seventh Framework Program (FP7/2007-2011) under grant agreement no. 216444 (PetaMedia) and the Swiss National Foundation for Scientific Research. The authors would also like to thank Krista Kappeler for her contribution on emotional characterization using MCA.

References

  1. Abd-Almageed, W.: Online, simultaneous shot boundary detection and key frame extraction for sports videos using rank tracing. In: 15th IEEE International Conference on Image Processing, 2008. ICIP 2008, pp. 3200–3203. IEEE, Piscataway (2008)

    Google Scholar 

  2. Adams, W., Iyengar, G., Lin, C., Naphade, M., Neti, C., Nock, H., Smith, J.: Semantic indexing of multimedia content using visual, audio, and text cues. EURASIP J. Appl. Signal Process. 2, 170–185 (2003)

    Google Scholar 

  3. Aftanas, L., Reva, N., Varlamov, A., Pavlov, S., Makhnev, V.: Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans: temporal and topographic characteristics. Neurosci. Behav. Physiol. 34(8), 859–867 (2004)

    Article  Google Scholar 

  4. Ames, M., Naaman, M.: Why we tag: motivations for annotation in mobile and online media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 971–980. ACM, New York (2007)

    Google Scholar 

  5. Bishop, C., en ligne), S.S.: Pattern Recognition and Machine Learning, vol. 4. springer, New York (2006)

    Google Scholar 

  6. Centeno, T., Lawrence, N.: Optimising kernel parameters and regularisation coefficients for non-linear discriminant analysis. J. Mach. Learn. Res. 7, 455–491 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Chanel, G., Kronegg, J., Grandjean, D., Pun, T.: Emotion assessment: arousal evaluation using EEG’s and peripheral physiological signals. Multimedia Content Representation, Classification and Security, pp. 530–537. Springer, Berlin/New York (2006)

    Google Scholar 

  8. Cowie, R.: Emotion-Oriented Systems: The Humaine Handbook. Springer, Heidelberg (2010)

    Google Scholar 

  9. Ekman, P., Levenson, R., Friesen, W.: Autonomic nervous system activity distinguishes among emotions. Science 221(4616), 1208 (1983)

    Article  Google Scholar 

  10. Fragopanagos, N., Taylor, J.: Emotion recognition in human-computer interaction. Neural Netw. 18(4), 389–405 (2005)

    Article  Google Scholar 

  11. Hanjalic, A., Xu, L.: Affective video content representation and modeling. IEEE Trans. Multimed. 7(1), 143–154 (2005)

    Article  Google Scholar 

  12. Healey, J.A.: Wearable and automotive systems for affect recognition from physiology. Ph.D. thesis, MIT (2000)

    Google Scholar 

  13. Hoffmann, U., Vesin, J., Ebrahimi, T., Diserens, K.: An efficient p300-based brain-computer interface for disabled subjects. J. Neurosci. methods 167(1), 115–125 (2008)

    Article  Google Scholar 

  14. Ishino, K., Hagiwara, M.: A feeling estimation system using a simple electroencephalograph. In: Proc. IEEE Int. Conf. Syst. Man Cybern. 5, 4204–4209 (2003)

    Google Scholar 

  15. Joho, H., Jose, J., Valenti, R., Sebe, N.: Exploiting facial expressions for affective video summarisation. In: Proceedings of the ACM International Conference on Image and Video Retrieval, p. 31. ACM, New York (2009)

    Google Scholar 

  16. Kang, H.: Affective content detection using HMMs. In: Proceedings of the Eleventh ACM International Conference on Multimedia, pp. 259–262. ACM, New York (2003)

    Google Scholar 

  17. Kierkels, J., Soleymani, M., Pun, T.: Queries and tags in affect-based multimedia retrieval. In: IEEE International Conference on Multimedia and Expo, 2009. ICME 2009, pp. 1436–1439. IEEE (2009)

    Google Scholar 

  18. Kim, J., André, E.: Emotion recognition based on physiological changes in music listening. IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2067–2083 (2008)

    Article  Google Scholar 

  19. Kim, K., Bang, S., Kim, S.: Emotion recognition system using short-term monitoring of physiological signals. Med. Biol. Eng. Comput. 42(3), 419–427 (2004)

    Article  Google Scholar 

  20. Koelstra, S., Muhl, C., Soleymani, M., Lee, J., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., Patras, I.: Deap: a database for emotion analysis using physiological signals. IEEE Trans. Affect. Comput. 99, 1–1 (2011)

    Google Scholar 

  21. Kostyunina, M., Kulikov, M.: Frequency characteristics of EEG spectra in the emotions. Neurosci. Behav. Physiol. 26(4), 340–343 (1996)

    Article  Google Scholar 

  22. Krause, C., Viemerö, V., Rosenqvist, A., Sillanmäki, L., Åström, T.: Relative electroencephalographic desynchronization and synchronization in humans to emotional film content: an analysis of the 4–6, 6–8, 8–10 and 10–12 Hz frequency bands. Neurosci. Lett. 286(1), 9–12 (2000)

    Article  Google Scholar 

  23. Lang, P., Greenwald, M., Bradeley, M., Hamm, A.: Looking at pictures- affective, facial, visceral, and behavioral reactions. Psychophysiology 30(3), 261–273 (1993)

    Article  Google Scholar 

  24. Lartillot, O., Toiviainen, P., Eerola, T.: A matlab toolbox for music information retrieval. Data Analysis, Machine Learning and Applications, pp. 261–268 (2008)

    Google Scholar 

  25. Lee, J., Park, C.: Adaptive decision fusion for audio-visual speech recognition. Speech Recognition, Technologies and Applications, p. 550 (2008)

    Google Scholar 

  26. Lienhart, R.: Comparison of automatic shot boundary detection algorithms. Proc. SPIE 3656, 290–301 (1999)

    Article  Google Scholar 

  27. Lin, Y., Wang, C., Jung, T., Wu, T., Jeng, S., Duann, J., Chen, J.: Eeg-based emotion recognition in music listening. IEEE Trans. Biomed. Eng. 57(7), 1798–1806 (2010)

    Article  Google Scholar 

  28. Lisetti, C.L., Nasoz, F.: Using noninvasive wearable computers to recognize human emotions from physiological signals. EURASIP J. Appl. Signal Process. 2004(1), 1672–1687 (2004)

    Article  Google Scholar 

  29. Lopatovska, I., Arapakis, I.: Theories, methods and current research on emotions in library and information science, information retrieval and human–computer interaction. Inf. Process. Manag. 47(4), 575–592 (2011)

    Article  Google Scholar 

  30. Mas, J., Fernandez, G.: Video shot boundary detection based on color histogram. In: Notebook Papers TRECVID2003, Gaithersburg, NIST (2003)

    Google Scholar 

  31. McFarland, R.: Relationship of skin temperature changes to the emotions accompanying music. Appl. Psychophysiol. Biofeedback 10(3), 255–267 (1985)

    Google Scholar 

  32. Pantic, M., Vinciarelli, A.: Implicit human-centered tagging [social sciences]. IEEE Signal Process. Mag. 26(6), 173–180 (2009)

    Article  Google Scholar 

  33. Petrantonakis, P., Hadjileontiadis, L.: Emotion recognition from eeg using higher order crossings. IEEE Trans. Inf. Technol. Biomed. 14(2), 186–197 (2010)

    Article  Google Scholar 

  34. Picard, R., Vyzas, E., Healey, J.: Toward machine emotional intelligence: analysis of affective physiological state. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1175–1191 (2001)

    Article  Google Scholar 

  35. Plutchik, R.: The nature of emotions. Am. Sci. 89, 344 (2001)

    Google Scholar 

  36. Potamianos, G., Neti, C.: Stream confidence estimation for audio-visual speech recognition. In: Sixth International Conference on Spoken Language Processing (2000)

    Google Scholar 

  37. Rasheed, Z., Sheikh, Y., Shah, M.: On the use of computable features for film classification. IEEE Trans. Circuits Sys. Video Technol. 15(1), 52–64 (2005)

    Article  Google Scholar 

  38. Russell, J., Mehrabian, A.: Evidence for a three-factor theory of emotions. J. Res. Personal. 11(3), 273–294 (1977)

    Article  Google Scholar 

  39. Schaaff, K., Schultz, T.: Towards emotion recognition from electroencephalographic signals. In: Proceedings of International Conference on Affective Computing and Intelligent Interaction and Workshops, Amsterdam, pp. 1–6 (2009)

    Google Scholar 

  40. Sebe, N., Cohen, I., Gevers, T., Huang, T.: Emotion recognition based on joint visual and audio cues. In: 18th International Conference on Pattern Recognition, 2006. ICPR 2006, vol. 1, pp. 1136–1139. IEEE, Washington, DC (2006)

    Google Scholar 

  41. Soleymani, M., Lichtenauer, J., Pun, T., Pantic, M.: A multi-modal affective database for affect recognition and implicit tagging. IEEE Trans. Affect. Comput. 99, 1–1 (2011)

    Google Scholar 

  42. Sun, K., Yu, J.: Video affective content representation and recognition using video affective tree and hidden markov models. Affective Computing and Intelligent Interaction, pp. 594–605. Springer, Berlin/New York (2007)

    Google Scholar 

  43. Ververidis, D., Kotropoulos, C.: Emotional speech recognition: resources, features, and methods. Speech Commun. 48(9), 1162–1181 (2006)

    Article  Google Scholar 

  44. Wang, Y., Liu, Z., Huang, J.: Multimedia content analysis-using both audio and visual clues. Signal Process. Mag. IEEE 17(6), 12–36 (2000)

    Article  Google Scholar 

  45. Yang, Y., Chen, H.: Ranking-based emotion recognition for music organization and retrieval. IEEE Trans. Audio Speech Lang. Process. 19(4), 762–774 (2011)

    Article  Google Scholar 

  46. Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 39–58 (2009). doi:10.1109/TPAMI.2008.52

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashkan Yazdani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Yazdani, A., Lee, JS., Ebrahimi, T. (2013). Toward Emotional Annotation of Multimedia Contents. In: Ramzan, N., van Zwol, R., Lee, JS., Clüver, K., Hua, XS. (eds) Social Media Retrieval. Computer Communications and Networks. Springer, London. https://doi.org/10.1007/978-1-4471-4555-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4555-4_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4554-7

  • Online ISBN: 978-1-4471-4555-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics