Recognition of Novelty Made Easy: Constraints of Channel Capacity on Generative Networks | SpringerLink
Skip to main content

Recognition of Novelty Made Easy: Constraints of Channel Capacity on Generative Networks

  • Conference paper
Connectionist Models of Learning, Development and Evolution

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

  • 155 Accesses

Abstract

We subseribe to the idea that the brain employs generative networks. In turn, we conclude that channel capacity constraints form the main obstacle for effective information transfer in the brain. Robust and fast information flow processing methods warranting efficient information transfer, e.g. grouping of inputs and information maximization principles need to be applied. For this reason, indepent component analyses on groups of patterns were conducted using (a) model labyrinth, (b) movies on highway traffic and (c) mixed acoustical signals. We found that in all cases ‘familiar’ inputs give rise to cumulated firing histograms close to exponential distributions, whereas ‘novel’ information are better deseribed by broad, sometimes truncated Gaussian distributions. It can be shown that upon minimization of mutual information between processing channels, noise can reveal itself locally. Therefore, we conjecture that novelty - as opposed to noise - can be recognized by means of the statistics of neuronal firing in brain areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Attneave, F. (1954). Some informational aspects of visual perception. Psychological Review, 61, 183–193.

    Article  Google Scholar 

  2. Baddeley, R. J., Abbott, L. F., Booth, M., Sengpiel, F., Freeman, T., Wakeman, E. A. & Rolls, E. T. (1997). Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc. Roy. Soc. London B 264, 1775–1783.

    Article  Google Scholar 

  3. Barlow, H. B. (1961). In: Sensory communication. Rosenblith, W. A. (ed.). Cambridge, MA: MIT Press.

    Google Scholar 

  4. Bell, A. J. & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7, 1129–1159.

    Article  Google Scholar 

  5. Bell, A. J. & Sejnowski, T. J. (1997). The ‘independent components’ of natural scenes are edge filters. Vision Research 37, 3327–3389.

    Article  Google Scholar 

  6. Charles, D. & Fyfe, C. (1998). Modelling multiple cause structure using rectification constraints. Neural Systems, 9,167–182.

    Article  MATH  Google Scholar 

  7. Chrobak, J. J., Lörincz, A. & Buzsaki G. (2000). Physiological patterns in the hipocampus-entorhinal cortex system. Hippocampus, 10,457–465.

    Article  Google Scholar 

  8. Cover, T. & Thomas, J. (1991). Elements of information theory. New York, USA: John Wiley and Sons.

    Book  MATH  Google Scholar 

  9. Dong, D. W. & Atick, J. J. (1995). Temporal decorrelation: a theory of lagged and nonlagged responses in the lateral geniculate nucleus. Network, 6, 159–178

    Article  MATH  Google Scholar 

  10. Field, D. J. (1987). Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Otical Society of America, A 4, 2379–2394.

    Article  Google Scholar 

  11. Hatteren, J. H. & Ruderman, D. L. (1998). Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex. Proc. Roy. Soc. London, B265, 2315–2320.

    Article  Google Scholar 

  12. Haykin, S. (1999). Neural Networks: A comprehensive foundation. New Jersey, USA: Prentice Hall.

    Google Scholar 

  13. Henze, D. A., Cameron, W.E. & Barrionuevo, G. (1996). Dendritic morphology and its effects on the amplitude and rise-time of synaptic signals in hippocampal CA3 pyramidal cells. J. Comp. Neurology, 369, 331–344.

    Article  Google Scholar 

  14. Hinton, G. E. & Ghahramani, Z. (1997). Generative models for discovering sparse distributed representations. Philosophical Transactions of the Royal Society B, 352, 1177–1190.

    Article  Google Scholar 

  15. Hinton, G. E. & Zemel, R. S. (1994). Autoencoders, minimum description length, and Heimholtz free energy. In: J. D. Cowan, G. Tesauro, & J. Alspector (ed), Advances in neural information processing systems, 6, 3–10. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  16. Horn, B.K.P. (1977). Understanding image intensities. Artifical Intelligence, 8, 201–231.

    Article  MATH  Google Scholar 

  17. Hvärinen, A., Hoyer, P., & Oja, E. (1999) Sparse code shrinkage: Denoising by maximum likelihood extimation. In: Kearns, M., Solla, S. A., & Cohn, D. (ed), Advances in Neural Information Processing Systems, 12, MIT Press, Cambridge MA.

    Google Scholar 

  18. Hvärinen, A. & Oja, E. (1997). A fast fixed-point algorithm for independent component analysis. Neural Computation, 9, 1483–1492.

    Article  Google Scholar 

  19. Hvärinen, A. & Oja, E. (2000). Independent component analysis: Aigorithms and applications. Neural Networks, 13(4–5):411430.

    Google Scholar 

  20. Jaffe, D. B & Carnevale, N. T. (1999). Passive normalization of synaptic integration influenced by dendritic architecture. Journal of Neurophysiolog, 82, 3268–3285.

    Google Scholar 

  21. Jutten, C. & Herault, J. (1991). Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 24, 1–10.

    Article  MATH  Google Scholar 

  22. Karhunen, J. Oja, E. Wang, L. Vigario, R. & Joutsensalo, J. (1997). A class of neural networks for independent component analysis. IEEE Transactions on Neural Networks, 8, 486–504.

    Article  Google Scholar 

  23. Koch, C. & Poggio, T. (1999). Predicting the visual world: Silence is golden. Nature Neuroscience, 2, 9–10.

    Article  Google Scholar 

  24. Lisman, J. E. (1999). Relating hippocampal circuitry to function: Recall of memory sequences by reciprocal dentate-CA3 interactions. Neuron, 22, 233–242.

    Article  Google Scholar 

  25. Lisman, J. E. & Idiart, M. A. P. (1995). A mechanism for storing 7+/-2 short-term memories in oscillatory subcycles. Science, 267, 1512–1514.

    Article  Google Scholar 

  26. Lörincz, A. (1997). Towards a unified model of cortical computation II: From contral architecture to a model of consciousness. Neural Network World, 7, 137–152.

    Google Scholar 

  27. Lörincz, A. (1998). Forming independent components via temporal locking of reconstruction architectures: A functional model of the hippocampus. Biological Cybernetics, 79,263–275.

    Article  MATH  Google Scholar 

  28. Lörincz, A. & Buzsáki, G. (1999). Computational model of the entorhinal-hippocampal region derived from a single principle. In: Proceedings of IJCNN, Washington, July 9–16, JCNN2136.PDF IEEE Catalog Number: 99CH36339C, ISBN: 0–7803–5532–6

    Google Scholar 

  29. Lörincz, A.&Buzsáki, Gy. (2000). Two-phase computational model training long-term memories in the entorhinal-hippocampal region. In: Scharfman, H. E., Witter, M. P., Schwarcz, R. (ed), The parahippocampal region: Implications for neurological and psychiatrie diseases, 911, New York Academy of Sciences, 83–111.

    Google Scholar 

  30. Olshausen, B. A. & Field, D. J. (1996). Emergence of simple-cell receptive field properties by leaming a sparse code for natural images. Nature, 381, 607–609.

    Article  Google Scholar 

  31. Parra, L., Deco, G. & Miesbach, S. (1995). Statistical independence and novelty detection with information preserving nonlinear maps. Neural Computation, 8, 260–269.

    Article  Google Scholar 

  32. Rao, R. P. N. & Ballard, D.H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2, 79–87.

    Article  Google Scholar 

  33. Rolls, E. T. & Treves, A. (1998). Neural networks and brain function. Oxford, UK: Oxford University Press.

    Google Scholar 

  34. Searle, J. R. (1992). The rediscovery of mind. Cambridge, MA: Bradford Books, MIT Press.

    Google Scholar 

  35. Shannon, C. E. (1948). A mathematical theory of communication. AT&T Bell Labs. Tech. J., 27,397–423.

    MathSciNet  Google Scholar 

  36. Thorpe, S. Fize, D. & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520–522.

    Article  Google Scholar 

  37. Treves, A., Panzeri, S., Rolls, E.T., Booth, M. & Wakeman, E. A. (1999). Firing rate distributions and efficiency of information transmission of inferior temporal cortex neurons to natural visual stimuli. Neural Computation, 11, 601–631.

    Article  Google Scholar 

  38. Wimbauer, S., Wenish, O. G., Miller, K. D. & van Hemmen, J. L. (1997). Development of spatio-temporal receptive fields of simple cells: I. Model formulation. Biological Cybernetics, 77, 456–461.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London

About this paper

Cite this paper

Lőrincz, A., Szatmáry, B., Szirtes, G., Takács, B. (2001). Recognition of Novelty Made Easy: Constraints of Channel Capacity on Generative Networks. In: French, R.M., Sougné, J.P. (eds) Connectionist Models of Learning, Development and Evolution. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0281-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0281-6_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-354-6

  • Online ISBN: 978-1-4471-0281-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics