Random Forests | SpringerLink
Skip to main content

Random Forests

  • Chapter
  • First Online:
Ensemble Machine Learning

Abstract

Random Forests were introduced by Leo Breiman [6] who was inspired by earlier work by Amit and Geman [2]. Although not obvious from the description in [6], Random Forests are an extension of Breiman’s bagging idea [5] and were developed as a competitor to boosting. Random Forests can be used for either a categorical response variable, referred to in [6] as “classification,” or a continuous response, referred to as “regression.” Similarly, the predictor variables can be either categorical or continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 26311
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 32889
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 32889
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amaratunga, D., Cabrera, J., Lee, Y.-S.: Enriched random forests. Bioinformatics 24 (18) pp. 2010–2014 (2008).

    Article  Google Scholar 

  2. Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees. Neural Computation 9(7) pp. 1545–1588 (1997).

    Article  Google Scholar 

  3. Biau, G., Devroye, L., Lugosi, G.: Consistency of Random Forests and Other Averaging Classifiers. Journal of Machine Learning Research 9 pp. 2039–2057 (2008).

    MathSciNet  MATH  Google Scholar 

  4. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth, New York (1984).

    MATH  Google Scholar 

  5. Breiman, L.: Bagging Predictors. Machine Learning 24 (2) pp. 123–140 (2001).

    Article  MATH  Google Scholar 

  6. Breiman, L.: Random Forests. Machine Learning 45 (1) pp. 5–32 (2001).

    Article  MATH  Google Scholar 

  7. Chen, X., Liu, C.-T., Zhang, M., Zhang, H.: A forest-based approach to identifying gene and genegene interactions. Proc Natl Acad Sci USA 104 (49) pp. 19199–19203 (2007).

    Article  Google Scholar 

  8. Dettling, M.: BagBoosting for Tumor Classification with Gene Expression Data. Bioinformatics 20 (18) pp. 3583–3593 (2004).

    Article  Google Scholar 

  9. Diaz-Uriarte, R., Alvarez de Andres, S.: Gene Selection and Classification of Microarray Data Using Random Forest. BMC Bioinformatics 7 (1) 3 (2006).

    Article  Google Scholar 

  10. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition. Springer Series in Statistics, Springer, New York (2009).

    Book  MATH  Google Scholar 

  11. Goldstein, B., Hubbard, A., Cutler, A. Barcellos, L.: An application of Random Forests to a genome-wide association dataset: Methodological considerations & new findings. BMC Genetics 11 (1) 49 (2010).

    Article  Google Scholar 

  12. Hothorn, T., Bühlmann, P., Dudoit, S., Molinaro, A., Van Der Laan, M.: Survival Ensembles. Biostatistics 7 (3) pp. 355–373 (2006).

    Article  MATH  Google Scholar 

  13. Ishwaran, H., Kogalur, U.B., Blackstone, E.H., Lauer, M.S.: Random survival forests. Annals of Applied Statistics 2 (3) pp. 841–860 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  14. Izenman, A.: Modern Multivariate Statistical Techniques. Springer Texts in Statistics, Springer, New York (2008).

    Book  MATH  Google Scholar 

  15. Liaw, A., Wiener, M.: Classification and Regression by randomForest. R News 2 (3) pp. 18–22 (2002).

    Google Scholar 

  16. Lin, Y., Jeon, Y.: Random Forests and Adaptive Nearest Neighbors. Journal of the American Statistical Association 101 (474) pp. 578–590 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  17. Mease, D., Wyner, A.: Evidence Contrary to the Statistical View of Boosting. Journal of Machine Learning Research 9 pp. 131–156 (2008).

    Google Scholar 

  18. Meinshausen, N.: Quantile Regression Forests. Journal of Machine Learning Research 7 pp. 983–999 (2006).

    MathSciNet  MATH  Google Scholar 

  19. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2011). http://www.R-project.org.

  20. Schroff, F., Criminisi, A., Zisserman, A.: Object Class Segmentation using Random Forests. Proceedings of the British Machine Vision Conference 2008, British Machine Vision Association, 1 (2008).

    Google Scholar 

  21. Segal, M., Xiao, Y.: Multivariate Random Forests. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1 (1) pp. 80–87 (2011).

    Google Scholar 

  22. Singh D., Febbo P.G., Ross K., Jackson D.G., Manola J., Ladd C., Tamayo P., Renshaw A.A., D’Amico A.V., Richie J.P., Lander E.S., Loda M., Kantoff P.W., Golub T.R., Sellers W.R.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1 (2) pp. 203–209 (2002).

    Article  Google Scholar 

  23. Stamey, T., Kabalin, J., McNeal J., Johnstone I., Freiha F., Redwine E., Yang N.: Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. II. Radical prostatectomy treated patients. Journal of Urology 16 pp. 1076–1083 (1989).

    Google Scholar 

  24. Statnikov, A., Wang, L., Aliferis, C.: A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 9 (1) 319 (2008).

    Article  Google Scholar 

  25. Wang, M., Chen, X., Zhang, H.: Maximal conditional chi-square importance in random forests. 26 (6): pp. 831–837 (2010).

    Google Scholar 

  26. Zhang, H., Singer, B.H.: Recursive Partitioning and Applications, Second Edition. Springer Series in Statistics, Springer, New York (2010).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adele Cutler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cutler, A., Cutler, D.R., Stevens, J.R. (2012). Random Forests. In: Zhang, C., Ma, Y. (eds) Ensemble Machine Learning. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9326-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9326-7_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9325-0

  • Online ISBN: 978-1-4419-9326-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics