Some Coloured Remarks on the Foundations of Mathematics in the 20th Century | SpringerLink
Skip to main content

Some Coloured Remarks on the Foundations of Mathematics in the 20th Century

  • Chapter
Logic, Epistemology, and the Unity of Science

Part of the book series: Logic, Epistemology, And The Unity Of Science ((LEUS,volume 1))

Abstract

According to the mainstream in the 20th century, the foundations of mathematics were identified with logic and set theory. Indeed, results concerning philosophically most interesting questions are often negative: the first order axiomatic set-theoretical universe is deductively incomplete, inevitably non-standard, and we have no clear idea of what the intended models of set theory are (part I). So, the foundational view of mathematics itself might be suspect. But in the spirit of Poincaré, one should look for an other solution. He remarks that the varieties of classical first order theories is unable to deal with the most common modes of mathematical reasoning such as complete induction and model building. For such a purpose, Hintikka's IF-Logic seems to be an adequate way-out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aspray, W. and P. Kitcher (eds.): 1988, History and Philosophy of Modern Mathematics, Minneapolis, Minnesota Press.

    Google Scholar 

  • Beth, Evert W.: 1965, The Foundations of Mathematics (11959), Amsterdam, North-Holland.

    Google Scholar 

  • Bryant, Sophie: 1902, ‘The Relation of Mathematics to General Formal Logic’, Proceedings of the Aristotelian Society 2, 105–134, cf. The Journal of Symbolic Logic 1(4), 139.

    Google Scholar 

  • Cavaillès, Jean: 1938, Remarques sur la formation de la théorie abstraite des ensembles. Etude historique et critique, Paris, Hermann.

    Google Scholar 

  • Cohen, Paul: 1966, Set Theory and the Continuum Hypothesis, New York, Amsterdam, Benjamin.

    Google Scholar 

  • Dummett, Michael A. E.: 1973, ‘The Justification of Deduction’, Proceedings of the British Academy 59, 201–232.

    Google Scholar 

  • Echeverria, Javier et al. (ed.): 1992, The Space of Mathematics. Philosophical Epistemological and Historical Explorations, Berlin, New York, De Gruyter.

    Google Scholar 

  • Garcia Diego, Alejandro R.: 1992, Bertrand Russell and the Origins of Set-theoretic ‘Paradoxes’, Basel, Boston, Berlin, Birkhäuser.

    Google Scholar 

  • Grattan-Guinness, Ivor: 1996, ‘Normal Mathematics and its Histo(iograph)y: The Tenacity of Algebraic Styles’, in E. Ausejo and M. Hormigon (eds.), Paradigms and Mathematics, Madrid, Siglo XXT de Espana Editores, pp. 203–213.

    Google Scholar 

  • Heinzmann, Gerhard: 1987, ‘Philosophical Pragmatism in Poincaré’, in J. Srzednicki (ed.), Reason and Argument, Initiatives in Logic, Dordrecht, Boston, Lancaster, Nijhoff, pp. 70–80.

    Google Scholar 

  • Heinzmann, Gerhard: 2002, ‘Les dogmes rationaliste et empiriste face à leur révision poiétique en philosophie des mathématiques’, in E. Schwartz (ed.), Actes du Colloque Jules Vuillemin, Hildesheim, Olms (forthcoming).

    Google Scholar 

  • Henkin, Leon: 1967, ‘The Foundations of Mathematics’, in R. Klibansky (ed.), Philosophy in the Mid Century, Firenze, La Nuova Italia Editrice, pp. 116–129.

    Google Scholar 

  • Hermes, Hans: 1956, ‘über die gegenwärtige Lage der mathematischen Logik und Grundlagen-forschung’, Jahresbericht der Deutschen Mathematiker Vereinigung 59, 49–69.

    Google Scholar 

  • Hintikka, Jaakko: 1996, The Principle of Mathematics Revisited, Cambridge, Cambridge University Press.

    Google Scholar 

  • Jech, Thomas: 1973, The Axiom of Choice, Amsterdam, London, North-Holland.

    Google Scholar 

  • Kneebone, G. T.: 1963, Mathematical Logic and the Foundations of Mathematics. An Introductory Survey, London, Van Nostrand.

    Google Scholar 

  • Livingston, Eric: 1986, The Ethnomethodological Foundations of Mathematics, London, Boston, Henly, Routledge.

    Google Scholar 

  • Mostowski, Andrzej: 1966, Thirty Years of Foundational Studies, Oxford, Basil Blackwell.

    Google Scholar 

  • Müller, Gert-Heinz and Lenski, Wolfgang: 1987, Ω-Bibliography of Mathematical Logic, Vols I–VI, Berlin, Heidelberg, Springer.

    Google Scholar 

  • Poincaré, Henri: 1908, Science etméthode, Paris, Flammarion.

    Google Scholar 

  • Prawitz, Dag: 1974, ‘On the Idea of a General Proof Theory’, Synthese 27, 63–77.

    Article  Google Scholar 

  • Quine, Willard Van Orman: 1953, ‘On What There Is’, in Quine (ed.), From a Logical Point of View, Cambridge MA, London, Harvard University Press, pp. 1–19.

    Google Scholar 

  • Shea, William, R.: 1983, ‘Do Historians and Philosophers of Science Share the Same Heritage?’, in W. Shea (ed.), Nature Mathematized, Dordrecht, London, Reidel.

    Google Scholar 

  • Vuillemin, Jules: 1979, ‘Laraison au regard de l’instauration et du développement scientifiques', in Th. Geraets (ed.), La rationalité aujourd'hui, Editions de l'Université, Ottawa, pp. 67–84.

    Google Scholar 

  • Wagner, Roland and Döbler, Jan Berg: 1993, Mathematische Logik von 1847 bis zur Gegenwart, Berlin, New York, De Gruyter.

    Google Scholar 

  • Wang, Hao: 1964, A Survey of Mathematical Logic, Peking, Amsterdam, Science Press, North-Holland.

    Google Scholar 

  • Weyl, Hermann: 1985, ‘Axiomatic versus Constructive Procedures in Mathematics’, The Mathematical Intelligenzer 7, 10–17, 38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Heinzmann, G. (2009). Some Coloured Remarks on the Foundations of Mathematics in the 20th Century. In: Rahman, S., Symons, J., Gabbay, D.M., Bendegem, J.P.v. (eds) Logic, Epistemology, and the Unity of Science. Logic, Epistemology, And The Unity Of Science, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2808-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2808-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2486-2

  • Online ISBN: 978-1-4020-2808-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics