Abstract
According to the mainstream in the 20th century, the foundations of mathematics were identified with logic and set theory. Indeed, results concerning philosophically most interesting questions are often negative: the first order axiomatic set-theoretical universe is deductively incomplete, inevitably non-standard, and we have no clear idea of what the intended models of set theory are (part I). So, the foundational view of mathematics itself might be suspect. But in the spirit of Poincaré, one should look for an other solution. He remarks that the varieties of classical first order theories is unable to deal with the most common modes of mathematical reasoning such as complete induction and model building. For such a purpose, Hintikka's IF-Logic seems to be an adequate way-out.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aspray, W. and P. Kitcher (eds.): 1988, History and Philosophy of Modern Mathematics, Minneapolis, Minnesota Press.
Beth, Evert W.: 1965, The Foundations of Mathematics (11959), Amsterdam, North-Holland.
Bryant, Sophie: 1902, ‘The Relation of Mathematics to General Formal Logic’, Proceedings of the Aristotelian Society 2, 105–134, cf. The Journal of Symbolic Logic 1(4), 139.
Cavaillès, Jean: 1938, Remarques sur la formation de la théorie abstraite des ensembles. Etude historique et critique, Paris, Hermann.
Cohen, Paul: 1966, Set Theory and the Continuum Hypothesis, New York, Amsterdam, Benjamin.
Dummett, Michael A. E.: 1973, ‘The Justification of Deduction’, Proceedings of the British Academy 59, 201–232.
Echeverria, Javier et al. (ed.): 1992, The Space of Mathematics. Philosophical Epistemological and Historical Explorations, Berlin, New York, De Gruyter.
Garcia Diego, Alejandro R.: 1992, Bertrand Russell and the Origins of Set-theoretic ‘Paradoxes’, Basel, Boston, Berlin, Birkhäuser.
Grattan-Guinness, Ivor: 1996, ‘Normal Mathematics and its Histo(iograph)y: The Tenacity of Algebraic Styles’, in E. Ausejo and M. Hormigon (eds.), Paradigms and Mathematics, Madrid, Siglo XXT de Espana Editores, pp. 203–213.
Heinzmann, Gerhard: 1987, ‘Philosophical Pragmatism in Poincaré’, in J. Srzednicki (ed.), Reason and Argument, Initiatives in Logic, Dordrecht, Boston, Lancaster, Nijhoff, pp. 70–80.
Heinzmann, Gerhard: 2002, ‘Les dogmes rationaliste et empiriste face à leur révision poiétique en philosophie des mathématiques’, in E. Schwartz (ed.), Actes du Colloque Jules Vuillemin, Hildesheim, Olms (forthcoming).
Henkin, Leon: 1967, ‘The Foundations of Mathematics’, in R. Klibansky (ed.), Philosophy in the Mid Century, Firenze, La Nuova Italia Editrice, pp. 116–129.
Hermes, Hans: 1956, ‘über die gegenwärtige Lage der mathematischen Logik und Grundlagen-forschung’, Jahresbericht der Deutschen Mathematiker Vereinigung 59, 49–69.
Hintikka, Jaakko: 1996, The Principle of Mathematics Revisited, Cambridge, Cambridge University Press.
Jech, Thomas: 1973, The Axiom of Choice, Amsterdam, London, North-Holland.
Kneebone, G. T.: 1963, Mathematical Logic and the Foundations of Mathematics. An Introductory Survey, London, Van Nostrand.
Livingston, Eric: 1986, The Ethnomethodological Foundations of Mathematics, London, Boston, Henly, Routledge.
Mostowski, Andrzej: 1966, Thirty Years of Foundational Studies, Oxford, Basil Blackwell.
Müller, Gert-Heinz and Lenski, Wolfgang: 1987, Ω-Bibliography of Mathematical Logic, Vols I–VI, Berlin, Heidelberg, Springer.
Poincaré, Henri: 1908, Science etméthode, Paris, Flammarion.
Prawitz, Dag: 1974, ‘On the Idea of a General Proof Theory’, Synthese 27, 63–77.
Quine, Willard Van Orman: 1953, ‘On What There Is’, in Quine (ed.), From a Logical Point of View, Cambridge MA, London, Harvard University Press, pp. 1–19.
Shea, William, R.: 1983, ‘Do Historians and Philosophers of Science Share the Same Heritage?’, in W. Shea (ed.), Nature Mathematized, Dordrecht, London, Reidel.
Vuillemin, Jules: 1979, ‘Laraison au regard de l’instauration et du développement scientifiques', in Th. Geraets (ed.), La rationalité aujourd'hui, Editions de l'Université, Ottawa, pp. 67–84.
Wagner, Roland and Döbler, Jan Berg: 1993, Mathematische Logik von 1847 bis zur Gegenwart, Berlin, New York, De Gruyter.
Wang, Hao: 1964, A Survey of Mathematical Logic, Peking, Amsterdam, Science Press, North-Holland.
Weyl, Hermann: 1985, ‘Axiomatic versus Constructive Procedures in Mathematics’, The Mathematical Intelligenzer 7, 10–17, 38.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer Science+Business Media B.V.
About this chapter
Cite this chapter
Heinzmann, G. (2009). Some Coloured Remarks on the Foundations of Mathematics in the 20th Century. In: Rahman, S., Symons, J., Gabbay, D.M., Bendegem, J.P.v. (eds) Logic, Epistemology, and the Unity of Science. Logic, Epistemology, And The Unity Of Science, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2808-3_4
Download citation
DOI: https://doi.org/10.1007/978-1-4020-2808-3_4
Publisher Name: Springer, Dordrecht
Print ISBN: 978-90-481-2486-2
Online ISBN: 978-1-4020-2808-3
eBook Packages: Springer Book Archive