Belief Contraction, Anti-Formulae and Resource Overdraft:Part II Deletion In Resource Unbounded Logics | SpringerLink
Skip to main content

Belief Contraction, Anti-Formulae and Resource Overdraft:Part II Deletion In Resource Unbounded Logics

  • Chapter
Logic, Epistemology, and the Unity of Science

Part of the book series: Logic, Epistemology, And The Unity Of Science ((LEUS,volume 1))

Abstract

The operation of deletion plays an important role in many areas of applied logic. However, there are a number of logical difficulties relating to the removal of elements from a database. These difficulties are usually handled by executing the operation of deletion on the meta-level.

In Gabbay et al. 2002, we argued that bringing the operation of deletion to the object level was a useful exercise and we analysed how this can be achieved in resource bounded logics such as linear logic.

In this paper, we continue the investigation by analysing ways of effecting object level deletion for logics which do not have a resource bound on the number of times a formula can be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alchourrón, C. A. and D. Makinson: 1982, ‘On the Logic of Theory Change: Contraction Functions and their Associated Revision Functions’, Theoria 48, 14–37.

    Article  Google Scholar 

  • Alchourrón, C. A. and D. Makinson: 1985, ‘The Logic of Theory Change: Safe Contraction’, Studia Logica 44, 405–422.

    Article  Google Scholar 

  • Alchourrón, C. A., P. Gärdenfors and D. Makinson: 1985, ‘On the Logic of Theory Change: Partial Meet Contraction and Revision Functions’, The Journal of Symbolic Logic 50, 510–530.

    Article  Google Scholar 

  • Anderson, A. R. and N. D. Belnap: 1975, Entailment, Vol. 1, Princeton University Press.

    Google Scholar 

  • Connolly, T., C. Begg and A. Strachan: 1999, Database Systems: A Practical Approach to Design, Implementation and Management, 2nd edn, Addison-Wesley.

    Google Scholar 

  • Darwiche, A. and J. Pearl: 1994, ‘On the Logic of Iterated Belief Revision’, in Ronald Fagin (ed.), Proceedings of the 5th International Conference on Principles of Knowledge Representation and Reasoning, Pacific Grove, CA, Morgan Kaufmann, pp. 5–23.

    Google Scholar 

  • Darwiche, A. and J. Pearl: 1997, ‘On the Logic of Iterated Belief Revision’, Artificial Intelligence 89, 1–29.

    Article  Google Scholar 

  • Date, C. J. and H. Darwen: 1997, A Guide to the SQL Standard: A User's Guide to the Standard Database Language, 4th edn, Addison-Wesley Longman, Inc.

    Google Scholar 

  • Freund, M. and D. Lehmann: 1994, ‘Belief Revision and Rational Inference’, Technical Report TR 94–16, The Leibniz Center for Research in Computer Science, Institute of Computer Science, Hebrew University.

    Google Scholar 

  • Gabbay, D. M.: 1996, Labelled Deductive Systems, Oxford University Press.

    Google Scholar 

  • Gabbay, D. M. and O. Rodrigues: 1997, ‘Structured Belief Bases: A Practical Approach to Prioritised Base Revision’, in Dov M. Gabbay, Rudolf Kruse, Andreas Nonnengart, and Hans Jürgen Ohlbach (eds.), Proceedings of First International Joint Conference on Qualitative and Quantitative Practical Reasoning, Springer-Verlag, pp. 267–281.

    Google Scholar 

  • Gabbay, D. M.: 1998, Elementary Logic: A Procedural Perspective, Prentice Hall.

    Google Scholar 

  • Gabbay, D. M.: 1999, ‘Compromise Update and Revision: A Position Paper’, in B. Fronhoffer and R. Pareschi (eds.), Dynamic Worlds, Kluwer, pp. 111–148.

    Google Scholar 

  • Gabbay, D. M. and N. Olivetti: 2000, Goal Directed Proof Theory, Kluwer.

    Google Scholar 

  • Gabbay, D. M., O. Rodrigues and A. Russo: 2000, ‘Revision by Translation’, in B. Bouchon-Meunier, R. Yager and L. A. Zadeh (eds.), Information, Uncertainty and Fusion: Proceedings of IPMU 98, Kluwer, pp. 3–32.

    Google Scholar 

  • Gabbay, D. M. and J. Woods: 2004, The Reach of Abduction: Insight and Trial, A Practical Logic of Cognitive Systems, Vol. 2, Elsevier.

    Google Scholar 

  • Gabbay, D. M., O. Rodrigues and J. Woods: 2002, ‘Belief Contraction, Anti-formulae and Resource Overdraft: Part I Deletion in Resource Bounded Logics’, Logic Journal of the IGPL 10, 601–652.

    Article  Google Scholar 

  • Gabbay, D. M., O. Rodrigues and J. Woods: in preparation, ‘Belief Contraction, Anti-formulae and Resource Overdraft: Part III Fine Tuning of the Deletion Process’.

    Google Scholar 

  • Gabbay, D. M., O. Rodrigues and J. Woods: in preparation, ‘Existence and Anti-existence in Non-classical Logics’.

    Google Scholar 

  • Gärdenfors, P.: 1978, ‘Conditionals and Changes of Belief’, Acta Philosophica Fennica 30, 381–404.

    Google Scholar 

  • Gärdenfors, P.: 1982, ‘Rules for Rational Changes of Belief’, in T. Pauli (ed.), Philosophical Essays Dedicated to Lannart Åqvist on His Fiftieth Birthday, Vol. 34 of Philosophical Studies, Philosophical Society and the Department of Philosophy, Uppsala University, pp. 88–101.

    Google Scholar 

  • Gärdenfors, P.: 1988, Knowledge in Flux: Modeling the Dynamics of Epistemic States, Cambridge, MA, London, England, A Bradford Book – The MIT Press.

    Google Scholar 

  • Girard, J. Y.: 1998, ‘Light Linear Logic, Information and Computation’, 143(2), 175–204.

    Article  Google Scholar 

  • Groff, J. R. and P. N. Weinberg: 1999, SQL: The Complete Reference, Osborne/McGraw-Hill.

    Google Scholar 

  • Grosof, B. N.: 1992, Updating and Structure in Non-montonic Theories, Ph.D. Thesis.

    Google Scholar 

  • Hansson, S. O.: 1999, A Textbook of Belief Dynamics: Theory Change and Database Updating, Dodrdrecht, Kluwer Academic Publishers.

    Google Scholar 

  • Kurosh, A. G.: 1963, General Algebra, Chelsea Publishing Commpany.

    Google Scholar 

  • Lehmann, D.: 1995, ‘Belief Revision, Revised’„ in Proceedings of the 14th International Joint Conference of Artificial Intelligence (IJCAI-95), pp. 1534–1540.

    Google Scholar 

  • Olivetti, N. and L. Terracini: 1992, ‘N-prolog and Equivalence of Logic Programs’, Journal of Logic, Language and Information 1, 253–340.

    Article  Google Scholar 

  • Restall, G.: 2000, An Introduction to Substructural Logics, New York, Routledge, ISBN 0-415-21534-X.

    Google Scholar 

  • Rodrigues, O.: 1998, A Methodology for Iterated Information Change, Ph.D. thesis, Department of Computing, Imperial College.

    Google Scholar 

  • Woods, J.: 1974, The Logic of Fiction: Philosophical Soundings of Deviant Logic, The Hague and Paris, Mouton.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gabbay, D.M., Rodrigues, O., Woods, J. (2009). Belief Contraction, Anti-Formulae and Resource Overdraft:Part II Deletion In Resource Unbounded Logics. In: Rahman, S., Symons, J., Gabbay, D.M., Bendegem, J.P.v. (eds) Logic, Epistemology, and the Unity of Science. Logic, Epistemology, And The Unity Of Science, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2808-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2808-3_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2486-2

  • Online ISBN: 978-1-4020-2808-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics