Social Network Trend Analysis Using Frequent Pattern Mining and Self Organizing Maps | SpringerLink
Skip to main content

Social Network Trend Analysis Using Frequent Pattern Mining and Self Organizing Maps

  • Conference paper
  • First Online:
Research and Development in Intelligent Systems XXVII (SGAI 2010)

Abstract

A technique for identifying, grouping and analysing trends in social networks is described. The trends of interest are defined in terms of sequences of support values for specific patterns that appear across a given social network. The trends are grouped using a SOM technique so that similar tends are clustered together. A cluster analysis technique is then applied to identify “interesting” trends. The focus of the paper is the Cattle Tracing System (CTS) database in operation in Great Britain, and this is therefore the focus of the evaluation. However, to illustrate the wider applicability of the trend mining technique, experiments using a more standard, car insurance, temporal database are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Google Trends. http://www.google.com/intl/en/trends/about.html

  2. Streibel, O.: Trend Mining with Semantic-Based Learning. Proceedings of CAiSE-DC (2008)

    Google Scholar 

  3. Khan, M.S., Coenen, F., Reid, D., Tawfik, H., Patel, R., Lawson, A.: A SlidingWindows based Dual Support Framework for Discovering Emerging Trends from Temporal Data. Research and Development in Intelligent Systems XXVIl, Springer, London, pp 35-48 (2010)

    Chapter  Google Scholar 

  4. Raza, J. and Liyanage, J. P.: An integrated qualitative trend analysis approach to identify process abnormalities: a case of oil export pumps in an offshore oil and gas production facility. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Professional Engineering Publishing, vol 223 (4), pp 251-258 (2008)

    Article  Google Scholar 

  5. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press (2006)

    Google Scholar 

  6. Lauw, H., Lim, E., Pang, H., Tan T.: Social Network Discovery by Mining Spatio-Temporal Events. Computational Mathematical Organization Theory, vol 11(2), pp. 97-118. Springer Netherlands (2005)

    Google Scholar 

  7. Agrawal, R., Imielinski, T., and Swami, A. Mining Association Rules between Sets of Items in Large Databases. In Proceedings of ACM SIGMOD Conference (1993)

    Google Scholar 

  8. Agrawal, R. andSrikant, R.: Mining sequential patterns. 11th International Conference on Data Engineering (1995)

    Google Scholar 

  9. Mannila, H., Toivonen, H., and Verkamo, A.: Discovery of Frequent Episodes in Event Sequences. Data Mining and Knowledge Discovery 1, pp 259289(1997)

    Google Scholar 

  10. Dong, G., and Li, J.: Efficient Mining of Emerging Patterns: Discovering Trends and Differences. In Proceeding of fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (1999)

    Google Scholar 

  11. Coenen, F.P., Goulbourne, G., Leng, P.: Computing Association Rules Using Partial Totals. Principles of Data Mining and Knowledge Discovery. LNCS, vol. 2168, pp. 54-66. Springer Berlin / Heidelberg (2001)

    Google Scholar 

  12. Kohonen, T.: The Self Organizing Maps. Neurocomputing Elsevier Science, vol. 21, pp. 1-6 (1998)

    Article  MATH  Google Scholar 

  13. Kohonen, T.: The Self Organizing Maps. Series in Information Sciences, vol. 30. Springer, Heidelberg (1995)

    Google Scholar 

  14. Wang, J., Delabie, J., Aasheim, H.C., Smel, E., Myklebost, O.: Clustering of the SOM easily reveals distinct gene expression patterns: results of a reanalysis of lymphoma study. BMC Bioinformatics, vol 3(36) (2002)

    Google Scholar 

  15. Yan, S., Abidi, S.S.R, Artes, P.H.: Analyzing Sub-Classifications of Glaucoma via SOM Based Clustering of Optic Nerve Images. Studies in Health Technology and Informatics, vol 116 pp 483-488 (2005)

    Google Scholar 

  16. Cottrell, M., Rousset, P.: A powerful Tool for Analyzing and Representing Multidimensional Quantitative and Qualitative Data. In Proceedings of IWANN 97. LNCS, vol. 1240, pp. 861-871. Springer Berlin / Heidelberg (1997)

    Google Scholar 

  17. Kohonen, T., Oja, E., Simula, O., Visa, A., Kangas, J.: Engineering applications of the Self-Organizing Map. Proceedings of the IEEE, vol. 84(10), pp. 1358-1384 (1996)

    Article  Google Scholar 

  18. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press (2006)

    Google Scholar 

  19. Lingras, P., Hogo, M. and Snorek, M.: Temporal Cluster Migration Matrices for Web Usage Mining. In Proceedings of IEEE/WIC/ACM InternationalConference on Web Intelligence (2004)

    Google Scholar 

  20. Denny, Williams, G.J and Christen, P.: ReDSOM: relative density visualization of temporal changes in cluster structures using self-organizing maps. IEEE International Conference on Data Mining (ICDM), IEEE Computer Society, pp 173-182 (2008)

    Google Scholar 

  21. Hido, S., Id T., Kashima, H., Kubo H. and Matsuzawa, H.: Unsupervised changes analysis using supervised learning. Advances in Knowledge Discovery and Data Mining, 12th Pacific-Asia Conference. PAKDD. LNCS, vol. 5012, pp 148-159 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Puteri N. E. Nohuddin , Rob Christley , Frans Coenen , Yogesh Patel , Christian Setzkorn or Shane Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this paper

Cite this paper

Nohuddin, P.N.E., Christley, R., Coenen, F., Patel, Y., Setzkorn, C., Williams, S. (2011). Social Network Trend Analysis Using Frequent Pattern Mining and Self Organizing Maps. In: Bramer, M., Petridis, M., Hopgood, A. (eds) Research and Development in Intelligent Systems XXVII. SGAI 2010. Springer, London. https://doi.org/10.1007/978-0-85729-130-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-130-1_24

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-129-5

  • Online ISBN: 978-0-85729-130-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics