Locomotion Activities in Smart Environments | SpringerLink
Skip to main content

Abstract

One subarea in the context of ambient intelligence concerns the support of moving objects, i. e. to monitor the course of events while an object crosses a smart environment and to intervene if the environment could provide assistance. For this purpose, the smart environment has to employ methods of knowledge representation and spatiotemporal reasoning. This enables the support of such diverse tasks as wayfinding, spatial search, and collaborative spatial work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham T, Roddick JF (1999) Survey of spatio-temporal databases. GeoInformatica 3(1):61–99

    Article  Google Scholar 

  2. Allen JF (1983) Maintaining knowledge about temporal intervals. Communications of the ACM 26(11):832–843

    Article  MATH  Google Scholar 

  3. Andrienko N, Andrienko G (2007) Extracting patterns of individual movement behaviour from a massive collection of tracked positions. In: Gottfried B (ed) Proceedings of the 1st Workshop on Behaviour Monitoring and Interpretation (BMI’07), CEURS Proceedings, vol 296, pp 1–16

    Google Scholar 

  4. Balazinska M, Deshpande A, Franklin MJ, Gibbons PB, Gray J, Handsen M, Liebhold M, Nath S, Szalay A, Tao V (2007) Data Management in the Worldwide Sensor Web. Pervasive Computing 6(2):30–40

    Article  Google Scholar 

  5. Bittner T (2001) The qualitative structure of built environments. Fundamenta Informaticae 46(1–2):97–128

    MATH  MathSciNet  Google Scholar 

  6. Cohn AG, Hazarika SM (2001) Qualitative spatial representation and reasoning: An overview. Fundamenta Informaticae 43:2–32

    MathSciNet  Google Scholar 

  7. Colliver V (2004) Hospital of the future: High-tech system helps improve quality of care. San Francisco Chronicle p E 1

    Google Scholar 

  8. Cook DJ (2006) Health Monitoring and Assistance to Support Aging in Place. Journal of Universal Computer Science 12(1):15–29

    Google Scholar 

  9. Edelsbrunner H (1987) Algorithms in combinatorial geometry. Springer, Berlin

    MATH  Google Scholar 

  10. Egenhofer M, Franzosa R (1991) Point-Set Topological Spatial Relations. International Journal of Geographical Information Systems 5(2):161–174

    Article  Google Scholar 

  11. Epstein SL (1997) Spatial representation for pragmatic navigation. In: Hirtle SC, Frank AU (eds) Spatial Information Theory COSIT ’97, LNCS, Springer, pp 373–388

    Google Scholar 

  12. Gaerling T, Lindberg E, Maentylae T (1983) Orientation in buildings: Effects of familiarity, visual access, and orientation aids. Applied Psychology 68:177–186

    Article  Google Scholar 

  13. Gaerling T, Book A, Lindberg E (1986) Spatial orientation and wayfinding in the designed environment: A conceptual analysis and some suggestions for postoccupancy evaluation. Journal of Architectural Planning Resources 3:55–64

    Google Scholar 

  14. Gibson J (1979) The ecological approach to visual perception. Hughton Mifflin Company, Boston

    Google Scholar 

  15. Goodman J, Pollack R (1993) Allowable sequences and order types in discrete and computational geometry. In: Pach J (ed) New trends in discrete and computational geometry, Springer, Berlin, pp 103–134

    Google Scholar 

  16. Gottfried B (2006) Spatial health systems. In: Bardram JE, Chachques JC, Varshney U (eds) 1st International Conference on Pervasive Computing Technologies for Healthcare (PCTH 2006), November 29 – December 1, Innsbruck, Austria, IEEE Press, p 7

    Google Scholar 

  17. Gottfried B (2008) Representing short-term observations of moving objects by a simple visual language. Journal of Visual Languages and Computing 19:321–342

    Article  Google Scholar 

  18. Gottfried B (2009) Modelling spatiotemporal developments in spatial health systems. In: Olla P, Tan J (eds) Mobile Health Solutions for Biomedical Applications, IGI Global (Idea Group Publishing), pp 270–284

    Google Scholar 

  19. Gottfried B, Guesgen HW, Hübner S (2006) Spatiotemporal reasoning for smart homes. In: Augusto JC, Nugent CD (eds) Designing Smart Homes, The Role of Artificial Intelligence, LNCS, vol 4008, Springer, Heidelberg, pp 16–34

    Chapter  Google Scholar 

  20. Grenon P, Smith B (2004) SNAP and SPAN: Towards dynamic spatial ontology. Spatial Cognition and Computation 4:69–104

    Article  Google Scholar 

  21. Guesgen HW, Marsland S (2009) Spatio-temporal reasoning and context awareness. In: Nakashima H, Augusto JC, Aghajan H (eds) Handbook of Ambient Intelligence and Smart Environments, LNCS (this volume), Springer, Heidelberg

    Google Scholar 

  22. Güting RH, Schneider M (2005) Moving Object Databases. Morgan Kaufmann Publishers, San Fransisco, CA, USA

    Google Scholar 

  23. Heine C, Kirn S (2004) Adapt at agent.hospital - agent based support of clinical processes. In: Proceedings of the 13th European Conference on Information Systems, The European IS Profession in the Global Networking Environment, ECIS 2004, Turku, Finland, June 14–16, p 14

    Google Scholar 

  24. Hightower J, Borriello G (2001) A Survey and Taxonomy of Location Systems for Ubiquitous Computing. Technical Report UW-CSE 01-08-03, University of Washington, Computer Science and Engineering, Box 352350, Seattle, WA 98195

    Google Scholar 

  25. Hirtle S, Heidron B (1993) The structure of cognitive maps: Representations and processes. In: Gaerling T, Golledge R (eds) Behaviour and Environment: Psychological and Geographical Aspects, Elsevier Science Publishers, pp 170–192

    Google Scholar 

  26. Hopkinson A (2007) State of the Art in RFID Technology. INFOTHECA – Journal of Informatics and Librarianship 8(1–2):179–187

    Google Scholar 

  27. Kaufmann R, Bollhalder H, Gysi M (2003) Infrared positioning systems to identify the location of animals. In: Werner A, Jarfe A (eds) Joint conference of ECPA-ECPLF, ATB Agrartechnik Bornim / Wageningen Academic Publishers, p 721

    Google Scholar 

  28. Kitasuka T, Hisazumi K, Nakanishi T, Fukuda A (2005) Positioning Technique of Wireless LAN Terminals Using RSSI between Terminals. In: Yang LT, Ma J, Takizawa M, Shih TK (eds) Proceedings of the 2005 International Conference on Pervasive Systems and Computing, PSC 2005, Las Vegas, Nevada, June 27–30, 2005, CSREA Press, pp 47–53

    Google Scholar 

  29. Krohn A, Beigl M, Hazas M, Gellersen HW (2005) Using fine-grained infrared positioning to support the surface-based activities of mobile users. In: 25th International Conference on Distributed Computing Systems Workshops (ICDCS 2005 Workshops), 6–10 June 2005, Columbus, OH, USA, IEEE Computer Society, pp 463–468

    Google Scholar 

  30. Kuipers B (1978) Modeling spatial knowledge. Cognitive Science 2:129–154

    Article  Google Scholar 

  31. Kurata Y, Egenhofer M (2007) The 9+-Intersection for Topological Relations between a Directed Line Segment and a Region. In: Gottfried B (ed) Proceedings of the 1st Workshop on Behaviour Monitoring and Interpretation (BMI’07), CEURS Proceedings, vol 296, pp 62–76

    Google Scholar 

  32. Kushki A, Plataniotis KN, Venetsanopoulos AN (2008) Indoor Positioning with Wireless Local Area Networks (WLAN). In: Shekhar S, Xiong H (eds) Encyclopedia of GIS, Springer, pp 566–571

    Google Scholar 

  33. Leiser D, Zilbershatz A (1989) The traveler – a computational model for spatial network learning. Environment and Behaviour 21(3):435–463

    Article  Google Scholar 

  34. Leonard JJ, Durrant-Whyte HF (1991) Simultaneous map building and localisation for an autonomous mobile robot. In: Proceedings of IEEE/RSJ International Workshop on Intelligent Robots and Systems, pp 1442–1447

    Google Scholar 

  35. Levitt T, Lawton D (1990) Qualitative navigation for mobile robots. Artificial Intelligence 44(6):305–360

    Article  Google Scholar 

  36. Liu H, Darabi H, Banerjee P, Liu J (2007) Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 37(6):1067–1080

    Article  Google Scholar 

  37. Martino-Saltzman D, Blasch B, Morris R, McNeal L (1991) Travel behaviour of nursing home residents perceived as wanderers and nonwanderers. Gerontologist 11:666–672

    Google Scholar 

  38. McDermott D, Davis E (1984) Planning routes through uncertain territory. Artificial Intelligence 22(1):551–560

    Google Scholar 

  39. Mea VD, Pittaro M, Roberto V (2004) Knowledge management and modelling in health care organizations: The standard operating procedures. In: Wimmer M (ed) Knowledge Management in Electronic Government, 5th IFIP International Working Conference, KMGov 2004, Krems, Austria, May 17–19, 2004, Proceedings, Springer, LNCS, vol 3035, pp 136–146

    Google Scholar 

  40. Mennis JL, Peuquet DJ, Qian L (2000) A conceptual framework for incorporating cognitive principles into geographical database recognition. International Journal of Geographical Information Science 14:501–520

    Article  Google Scholar 

  41. Millonig A, Gartner G (2007) Monitoring pedestrian spatio-temporal behaviour. In: Gottfried B (ed) Proceedings of the 1st Workshop on Behaviour Monitoring and Interpretation (BMI’07), CEURS Proceedings, vol 296, pp 29–42

    Google Scholar 

  42. Monferrer EMT, Lobo FT (2002) Qualitative Velocity. In: Escrig MT, Toledo F, Golobardes E (eds) CCIA 2002, Springer Berlin Heidelberg, LNAI, vol 2504, pp 29–39

    Google Scholar 

  43. Muller P (1998) A qualitative theory of motion based on spatio-temporal primitives. In: Cohn A, Schubert L, Shapiro S (eds) Proceedings of the 6th International Conference on Principles of Knowledge Representation and Reasoning, Morgan Kaufmann, pp 131–141

    Google Scholar 

  44. Orr RJ, Abowd GD (2000) The Smart Floor: A Mechanism for Natural User Identification and Tracking. In: Proceedings of the 2000 Conference on Human Factors in Computing Systems (CHI 2000), pp 1–6

    Google Scholar 

  45. Peuquet DJ (1994) It’s about time: A conceptual framework for the representation of temporal dynamics in geographic information systems. Annals of the Association of American Geographers 84:441–461

    Article  Google Scholar 

  46. Randell DA, Cui Z, Cohn AG (1992) A spatial logic based on regions and connection. In: Proc 3rd Int. Conf. on Knowledge Representation and Reasoning: Cambridge, Massachusetts, USA, October 25–29, 1992, Morgan Kaufman, San Mateo, pp 165–176

    Google Scholar 

  47. Richter KF, Tomko M, Winter S (2008) A Dialog-Driven Process of Generating Route Directions. Computers, Environment and Urban Systems 32(3):26

    Article  Google Scholar 

  48. Satoh I (2007) A location model for smart environments. Pervasive and Mobile Computing 3:158–179

    Article  Google Scholar 

  49. Steinhage A, Lauterbach C (2008) Monitoring movement behaviour by means of a large area proximity sensor array in the floor. In: Gottfried B, Aghajan H (eds) 2nd Workshop on Behaviour Monitoring and Interpretation (BMI’08), vol 396, CEURS Proceedings, pp 15–27

    Google Scholar 

  50. Volcic R, Kappers AML (2008) Allocentric and egocentric reference frames in the processing of three-dimensional haptic space. Experimental Brain Research 188:199–213

    Article  Google Scholar 

  51. Weakliam J, Bertolotto M, Wilson DC (2005) Implicit interaction profiling for recommending spatial content. In: Shahabi C, Boucelma O (eds) 13th ACM International Workshop on Geographic Information Systems, ACM-GIS 2005, November 4-5, 2005, Bremen, Germany, Proceedings, ACM, pp 285–294

    Google Scholar 

  52. Weinstein R (2005) RFID: a technical overview and its application to the enterprise. IT Professional 7(3):27–33

    Article  Google Scholar 

  53. Winter S (2003) Route Adaptive Selection of Salient Features. In: Kuhn W, Worboys M, Timpf S (eds) Spatial Information Theory: Foundations of Geographic Information Science, Int. Conference COSIT 2003, LNCS, Springer-Verlag, Ittingen, Switzerland, pp 101–117

    Google Scholar 

  54. Wood Z, Galton A (2008) Collectives and how they move: A tale of two classifications. In: Gottfried B, Aghajan H (eds) 2nd Workshop on Behaviour Monitoring and Interpretation (BMI’08), CEURS Proceedings, vol 396, pp 57–71

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Gottfried .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gottfried, B. (2010). Locomotion Activities in Smart Environments. In: Nakashima, H., Aghajan, H., Augusto, J.C. (eds) Handbook of Ambient Intelligence and Smart Environments. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-93808-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-93808-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-93807-3

  • Online ISBN: 978-0-387-93808-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics