Global Optimization in Protein Folding | SpringerLink
Skip to main content

Global Optimization in Protein Folding

  • Reference work entry
Encyclopedia of Optimization

Article Outline

Keywords and Phrases

Introduction

The Build-up Procedure

  Outline of the Procedure

  Drawbacks of the Procedure

  Applications

The Self Consistent Electrostatic Field Method

  Computation of the Electric Field and Dipole Moments

  Degree of Alignment of a Dipole Moment with the Electric Field

  Best-possible Alignment of a Dipole Moment with the Electric Field

  Applications

The Monte Carlo-Minimization Method

  Applications

The Electrostatically Driven Monte Carlo Method

  The Electrostatically Driven Monte Carlo Method

  Backtrack

  Applications

The Diffusion Equation Method and Other Methods Based on the Deformation of the Potential-Energy Surface

The Conformational Space Annealing Method

Hierarchical Approach

References

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 242957
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 331018
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Androulakis IP, Maranas CD, Floudas CA (1997) Prediction of oligopeptide conformations via deterministic global optimization. J Glob Optim 11:1–34

    Article  MathSciNet  MATH  Google Scholar 

  2. Ashkenazi G, Ripoll DR, Lotan N, Scheraga HA (1997) A molecular switch for biological logic gates: conformational studies. Biosens Bioelectron 12:85–95

    Article  Google Scholar 

  3. Bharucha-Reid AT (1960) Elements of the theory of Markov processes and their applications. McGraw-Hill, New York

    MATH  Google Scholar 

  4. Chou K-C, Némethy G, Scheraga HA (1983) Energetic approach to the packing of α‑helices. 1. Equivalent helices. J Phys Chem 87:2869–2881

    Article  Google Scholar 

  5. Czaplewski C, Ołdziej S, Liwo A, Scheraga HA (2004) Prediction of the structures of proteins with the UNRES force field, including dynamic formation and breaking of disulfide bonds. PEDS 17:29–36

    Google Scholar 

  6. Dygert M, Gō N, Scheraga HA (1975) Use of a symmetry condition to compute the conformation of gramicidin S. Macromolecules 8:750–761

    Article  Google Scholar 

  7. Faerman CH, Ripoll DR (1992) Conformational analysis of a twelve‐residue analogue of mastoparan and mastoparan X. Proteins Struc Func Gen 12:111–116

    Article  Google Scholar 

  8. Gay DM (1983) Algorithm 611. Subroutines for unconstrained minimization using a model/trust-region approach. ACM Trans Math Softw 9:503–524

    Article  MathSciNet  MATH  Google Scholar 

  9. Gibson KD, Scheraga HA (1987) Revised algorithms for the build-up procedure for predicting protein conformations by energy minimization. J Comput Chem 8:826–834

    Article  Google Scholar 

  10. Hagler AT, Stern PS, Sharon R, Becker JM, Naider F (1979) Computer simulation of the conformational properties of oligopeptides. Comparison of theoretical methods and analysis of experimental results. J Am Chem Soc 101:6842–6852

    Article  Google Scholar 

  11. Hol WGJ (1985) The role of the α‑helix dipole in protein function and structure. Prog Biophys Molec Biol 45:149–195

    Google Scholar 

  12. Hol WGJ, Halie LM, Sander C (1981) Dipoles of the α‑helix and β‑sheet: their role in protein folding. Nature 294:532–536

    Google Scholar 

  13. Kaźmierkiewicz R, Liwo A, Scheraga HA (2002) Energy-based reconstruction of a protein backbone from its α‑carbon-trace by a Monte Carlo method. J Comput Chem 23:715–723

    Article  Google Scholar 

  14. Kaźmierkiewicz R, Liwo A, Scheraga HA (2003) Addition of side chains to a known backbone with defined side-chain centroids. Biophys Chem 100:261–280, Erratum: Biophys Chem 106:91

    Google Scholar 

  15. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  MathSciNet  Google Scholar 

  16. Kostrowicki J, Piela L, Cherayil BJ, Scheraga HA (1991) Performance of the diffusion equation method in searches for optimum structures of clusters of Lennard-Jones atoms. J Phys Chem 95:4113–4119

    Article  Google Scholar 

  17. Kostrowicki J, Scheraga HA (1992) Application of the diffusion equation method for global optimization to oligopeptides. J Phys Chem 96:7442–7449

    Article  Google Scholar 

  18. Kubo R (1962) Generalized cumulant expansion method. J Phys Soc Japan 17:1100–1120

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee J, Liwo A, Scheraga HA (1999) Energy-based denovo protein folding by conformational space annealing and an off-lattice united‐residue force field: application to the 10‑55 fragment of staphylococcal protein A and to apo calbindin D9K. Proc Natl Acad Sci USA 96:2025–2030

    Article  Google Scholar 

  20. Lee J, Scheraga HA, Rackovsky S (1997) New optimization method for conformational energy calculations on polypeptides: Conformational space annealing. J Comput Chem 18:1222–1232

    Article  Google Scholar 

  21. Lee J, Scheraga HA (1999) Conformational space annealing by parallel computations: extensive conformational search of Met‐enkephalin and of the 20‑residue membrane-bound portion of melittin. Int J Quant Chem 75:255–265

    Article  Google Scholar 

  22. Lee J, Scheraga HA, Rackovsky S (1997) New optimization method for conformational energy calculations on polypeptides: conformational space annealing. J Comput Chem 18:1222–1232

    Article  Google Scholar 

  23. Lee J, Scheraga HA, Rackovsky S (1998) Conformational analysis of the 20‑residue membrane-bound portion of melittin by conformational space annealing. Biopolymers 46:103–115

    Article  Google Scholar 

  24. Lee J, Scheraga HA, Rackovsky S (1998) Conformational analysis of the 20‑residue membrane-bound portion of melittin by conformational space annealing. Biopolymers 46:103–115

    Article  Google Scholar 

  25. Levitt M, Chothia C (1976) Structural patterns in globular proteins. Nature 261:552–558

    Article  Google Scholar 

  26. Li Z, Scheraga HA (1987) Monte Carlo‐minimization approach to the multiple‐minima problem in protein folding. Proc Natl Acad Sci USA 84:6611–6615

    Article  MathSciNet  Google Scholar 

  27. Li Z, Scheraga HA (1988) Structure and free energy of complex thermodynamic systems. J Molec Str (Theochem) 179:333–352

    Article  Google Scholar 

  28. Liwo A, Arłukowicz P, Czaplewski C, Ołdziej S, Pillardy J, Scheraga HA (2002) A method for optimizing potential‐energy functions by a hierarchical design of the potential‐energy landscape: application to the UNRES force field. Proc Natl Acad Sci USA 99:1937–1942

    Article  Google Scholar 

  29. Liwo A, Czaplewski C, Pillardy J, Scheraga HA (2001) Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united‐residue force field. J Chem Phys 115:2323–2347

    Article  Google Scholar 

  30. Liwo A, Gibson KD, Scheraga HA, Brandt-Rauf PW, Monaco R, Pincus MR (1994) Comparison of the low energy conformations of an oncogenic and a non‐oncogenic p21 protein, neither of which binds GTP or GDP. J Protein Chem 13:237–251

    Article  Google Scholar 

  31. Liwo A, Kaźmierkiewicz R, Czaplewski C, Groth M, Ołdziej S, Wawak RJ, Rackovsky S, Pincus MR, Scheraga HA (1998) United‐residue force field for off-lattice protein‐structure simulations; III. Origin of backbone hydrogen‐bonding cooperativity in united‐residue potentials. J Comput Chem 19:259–276

    Article  Google Scholar 

  32. Liwo A, Khalili M, Czaplewski C, Kalinowski S, Ołdziej S, Wachucik K, Scheraga HA (2007) Modification and optimization of the united‐residue (UNRES) potential energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins. J Phys Chem B 111:260–285

    Article  Google Scholar 

  33. Liwo A, Khalili M, Scheraga HA (2005) Molecular dynamics with the united‐residue (UNRES) model of polypeptide chains; test of the approach on model proteins. Proc Natl Acad Sci USA 102:2362–2367

    Article  Google Scholar 

  34. Liwo A, Lee J, Ripoll DR, Pillardy J, Scheraga HA (1999) Protein structure prediction by global optimization of a potential energy function. Proc Natl Acad Sci USA 96:5482–5485

    Article  Google Scholar 

  35. Liwo A, Ołdziej S, Czaplewski C, Kozłowska U, Scheraga HA (2004) Parameterization of backbone‐electrostatic and multibody contributions to the UNRES force field for protein‐structure prediction from ab initio energy surfaces of model systems. J Phys Chem B 108:9421–9438

    Article  Google Scholar 

  36. Liwo A, Ołdziej S, Pincus MR, Wawak RJ, Rackovsky S, Scheraga HA (1997) A united‐residue force field for off-lattice protein‐structure simulations. I. Functional forms and parameters of long-range side-chain interaction potentials from protein crystal data. J Comput Chem 18:849–873

    Article  Google Scholar 

  37. Liwo A, Pincus MR, Wawak RJ, Rackovsky S, Ołdziej S, Scheraga HA (1997) A united‐residue force field for off-lattice protein‐structure simulations. II: Parameterization of local interactions and determination of the weights of energy terms by Z‑score optimization. J Comput Chem 18:874–887

    Google Scholar 

  38. Liwo A, Pincus MR, Wawak RJ, Rackovsky S, Scheraga HA (1993) Prediction of protein conformation on the basis of a search for compact structures; test on avian pancreatic polypeptide. Protein Sci 2:1715–1731

    Article  Google Scholar 

  39. Liwo A, Tempczyk A, Ołdziej S, Shenderovich MD, Hruby VJ, Talluri S, Ciarkowski J, Kasprzykowski F, Łankiewicz L, Grzonka Z (1996) Exploration of the conformational space of oxytocin and arginine‐vasopressin using the electrostatically‐driven Monte Carlo and molecular dynamics methods. Biopolymers 38:157–175

    Article  Google Scholar 

  40. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  Google Scholar 

  41. Miller MH, Némethy G, Scheraga HA (1980) Calculation of the structures of collagen models. Role of interchain interactions in determining the triple‐helical coiled‐coil conformation. 2. Poly(glycyl‐prolyl‐hydroxyprolyl). Macromolecules 13:470–478

    Article  Google Scholar 

  42. Miller MH, Némethy G, Scheraga HA (1980) Calculation of the structures of collagen models. Role of interchain interactions in determining the triple‐helical coiled- coil conformation. 3. Poly(glycyl‐prolyl‐alanyl). Macromolecules 13:910–913

    Article  Google Scholar 

  43. Miller MH, Scheraga HA (1976) Calculation of the structures of collagen models. Role of interchain interactions in determining the triple‐helical coiled-coil conformation. I. Poly(glycyl‐prolyl‐prolyl). J Polym Sci Polym Symposia 54:171–200

    Google Scholar 

  44. Momany FA, McGuire RF, Burgess AW, Scheraga HA (1975) Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, non-bonded interactions, hydrogen bond interactions and intrinsic torsional potential for the naturally occurring amino-acids. J Phys Chem 79:2361–2381

    Article  Google Scholar 

  45. Morales LB, Garduño Juárez RG, Romero D (1991) Applications of simulated annealing to the multiple‐minima problem in small peptides. J Biomol Struct Dyn 8:721–735

    Google Scholar 

  46. Morales LB, Garduño Juárez RG, Romero D (1992) The multiple‐minima problem in small peptides revisited. The Threshold Accepting approach. J Biomol Struct Dyn 9:951–957

    Google Scholar 

  47. Nanias M, Czaplewski C, Scheraga HA (2006) Replica exchange and multicanonical algorithms with the coarse‐grained united‐residue (UNRES) force field. J Chem Theor Comput 2:513–528

    Article  Google Scholar 

  48. Nayeem A, Vila J, Scheraga HA (1991) A comparative study of simulated‐annealing and Monte Carlo-with‐minimization approaches to the minimum‐energy structures of polypeptides: Metenkephalin. J Comp Chem 12:595–605

    Google Scholar 

  49. Némethy G, Gibson KD, Palmer KA, Yoon CN, Paterlini G, Zagari A, Rumsey S, Scheraga H (1992) Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline‐containing peptides. J Phys Chem 96:6472–6484

    Article  Google Scholar 

  50. Némethy G, Pottle MS, Scheraga HA (1983) Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occurring amino acids. J Phys Chem 87:1883–1887

    Article  Google Scholar 

  51. Némethy G, Scheraga HA (1984) Hydrogen bonding involving the ornithine side chain of gramicidin S. Biochem Biophys Res Commun 118:643–647

    Article  Google Scholar 

  52. Ołdziej S, Czaplewski C, Liwo A, Chinchio M, Nanias M, Vila JA, Khalili M, Arnautova YA, Jagielska A, Makowski M, Schafroth HD, Kaźmierkiewicz R, Ripoll DR, Pillardy J, Saunders JA, Kang Y-K, Gibson KD, Scheraga HA (2005) Physics-based protein‐structure prediction using a hierarchical protocol based on the UNRES force field – test with CASP5 and CASP6 targets. Proc Natl Acad Sci USA 102:7547–7552

    Article  Google Scholar 

  53. Ołdziej S, Kozłowska U, Liwo A, Scheraga HA (2003) Determination of the potentials of mean force for rotation about Cα⋅⋅⋅C α virtual bonds in polypeptides from the ab initio energy surfaces of terminally‐blocked glycine, alanine, and proline. J Phys Chem A 107:8035–8046

    Article  Google Scholar 

  54. Ołdziej S, Łagiewka J, Liwo A, Czaplewski C, Chinchio M, Nanias M, Scheraga HA (2004) Optimization of the UNRES force field by hierarchical design of the potential‐energy landscape: III. Use of many proteins in optimization. J Phys Chem B 108:16950–16959

    Article  Google Scholar 

  55. Olszewski KA, Piela L, Scheraga HA (1992) Mean-field theory as a tool for intramolecular conformational optimization. 1. Tests on terminally‐blocked alanine and Metenkephalin. J Phys Chem 96:4672–4676

    Article  Google Scholar 

  56. Olszewski KA, Piela L, Scheraga HA (1993) Mean field theory as a tool for intramolecular conformational optimization. 2. Tests on the homopolypeptides decaglycine and icosalanine. J Phys Chem 97:260–266

    Article  Google Scholar 

  57. Paine GH, Scheraga HA (1985) Prediction of the native conformation of a polypeptide by a statistical‐mechanical procedure. I. Backbone structure of enkephalin. Biopolymers 24:1391–1436

    Article  Google Scholar 

  58. Paine GH, Scheraga HA (1986) Prediction of the native conformation of a polypeptide by a statistical‐mechanical procedure. II. Average backbone structure of enkephalin. Biopolymers 25:1547–1563

    Article  Google Scholar 

  59. Paine GH, Scheraga HA (1987) Prediction of the native conformation of a polypeptide by a statistical‐mechanical procedure. III. Probable and average conformations of enkephalin. Biopolymers 26:1125–1162

    Article  Google Scholar 

  60. Perutz MF (1978) Electrostatic effects in proteins. Science 201:1187–1191

    Article  Google Scholar 

  61. Piela L, Kostrowicki J, Scheraga HA (1989) The multiple‐minima problem in the conformational analysis of molecules. Deformation of the potential energy hypersurface by the diffusion equation method. J Phys Chem 93:3339–3346

    Article  Google Scholar 

  62. Piela L, Scheraga HA (1987) On the multiple‐minima problem in the conformational analysis of polypeptides. I. Backbone degrees of freedom for a perturbed α‑helix. Biopolymers 26:S33–S58

    Article  Google Scholar 

  63. Pillardy J, Arnautova YA, Czaplewski C, Gibson KD, Scheraga HA (2001) Conformation‐family Monte Carlo: a new method for crystal structure prediction. Proc Natl Acad Sci USA 98:12351–12356

    Article  Google Scholar 

  64. Pillardy J, Czaplewski C, Liwo A, Lee J, Ripoll DR, Kaźmierkiewicz R, Ołdziej S, Wedemeyer WJ, Gibson KD, Arnautova YA, Saunders J, Ye Y-J, Scheraga HA (2001) Recent improvements in prediction of protein structure by global ptimization of a potential energy function. Proc Natl Acad Sci USA 98:2329–2333

    Article  Google Scholar 

  65. Pillardy J, Czaplewski C, Wedemeyer WJ, Scheraga HA (2000) Conformation‐family Monte Carlo (CFMC): an efficient computational tool for identifying the low-energy states of a macromolecule. Helv Chim Acta 83:2214–2230

    Article  Google Scholar 

  66. Pillardy J, Liwo A, Groth M, Scheraga HA (1999) An efficient deformation‐based global optimization method for off-lattice polymer chains; self‐consistent basin-to-deformed-basin mapping (SCBDBM). Application to united‐residue polypeptide chains. J Phys Chem B 103:7353–7366

    Article  Google Scholar 

  67. Pillardy J, Liwo A, Scheraga HA (1999) An efficient deformation‐based global optimization method (Self‐Consistent Basin-to-Deformed-Basin Mapping (SCBDBM)). Application to Lennard-Jones atomic clusters. J Phys Chem A 103:9370–9377

    Article  Google Scholar 

  68. Pillardy J, Olszewski KA, Piela L (1992) Performance of the shift method of global minimization in searches for optimum structures of clusters of Lennard-Jones atoms. J Phys Chem 96:4337–4341

    Article  Google Scholar 

  69. Pillardy J, Olszewski KA, Piela L (1992) Theoretically predicted lowest‐energy structures of water clusters. J Mol Struct (Theochem) 270:277–285

    Google Scholar 

  70. Pillardy J, Piela L (1997) Smoothing techniques of global optimization. The distance scaling method in searches for the most stable Lennard-Jones atomic clusters. J Comp Chem 18:2040–2049

    Article  Google Scholar 

  71. Pincus MR, Klausner RD, Scheraga HA (1982) Calculation of the three‐dimensional structure of the membrane-bound portion of melittin from its amino acid sequence. Proc Natl Acad Sci USA 79:5107–5110

    Article  Google Scholar 

  72. Pincus MR, Murphy RB, Carty RP, Chen J, Shah D, Scheraga HA (1988) Conformational analysis of possible biologically active (receptor-bound) conformations of peptides derived from cholecystokinin, cerulein and little gastrin and the opiate peptide, Metenkephalin. Peptides 9(1):145–152

    Article  Google Scholar 

  73. Purisima EO, Scheraga HA (1987) An approach to the multiple‐minima problem in protein folding by relaxing dimensionality. Tests on enkephalin. J Mol Biol 196:697–709

    Article  Google Scholar 

  74. Rapaport DC, Scheraga HA (1981) Evolution and stability of polypeptide chain conformation: a simulation study. Macromolecules 14:1238–1246

    Article  Google Scholar 

  75. Ripoll DR (1992) Conformational study of a peptide epitope shows large preferences for β-turn conformations. Int J Pept Protein Res 40:575–581

    Google Scholar 

  76. Ripoll DR, Piela L, Vásquez M, Scheraga HA (1991) On the multiple‐minima problem in the conformational analysis of polypeptides. V. Application of the self‐consistent electrostatic field and the electrostatically driven Monte Carlo methods to bovine pancreatic trypsin inhibitor. Proteins Struc Func Gen 10:188–198

    Article  Google Scholar 

  77. Ripoll DR, Liwo A, Scheraga HA (1998) New developments of the electrostatically driven Monte Carlo method – Test on the membrane bound portion of melittin. Biopolymers 46:117–126

    Article  Google Scholar 

  78. Ripoll DR, Scheraga HA (1988) On the multiple‐minima problem in the conformational analysis of polypeptides. II. An electrostatically driven Monte Carlo method-tests on poly(L-alanine). Biopolymers 27:1283–1303

    Article  Google Scholar 

  79. Ripoll DR, Scheraga HA (1989) The multiple‐minima problem in the conformational analysis of polypeptides. III. An electrostatically driven Monte Carlo method; tests on enkephalin. J Protein Chem 8:263–287

    Article  Google Scholar 

  80. Ripoll DR, Vásquez MJ, Scheraga HA (1991) The electrostatically driven Monte Carlo method: Application to conformational analysis of decaglycine. Biopolymers 31:319–330

    Article  Google Scholar 

  81. Ripoll DR, Vila JA, Scheraga HA (2004) Folding of the villin headpiece subdomain from random structures. Analysis of the charge distribution as a function of the pH. J Mol Biol 339:915–925

    Article  Google Scholar 

  82. Ripoll DR, Vila JA, Scheraga HA (2005) On the orientation of the backbone dipoles in native folds. Proc Natl Acad Sci USA 102:7559–7564

    Article  Google Scholar 

  83. Saunders JA, Scheraga HA (2003) Ab initio structure prediction of two α‑helical oligomers with a multiple-chain united‐residue force field and global search. Biopolymers 68:300–317

    Article  Google Scholar 

  84. Saunders JA, Scheraga HA (2003) Challenges in structure prediction of oligomeric proteins at the united‐residue level: searching the multiple-chain energy landscape with CSA and CFMC procedures. Biopolymers 68:318–332

    Article  Google Scholar 

  85. Scheraga HA (1974) Prediction of protein conformation. In: Anfinsen CB, Schechter AN (eds) Current Topics in Biochemistry, 1973. Academic Press, New York, pp 1–42

    Google Scholar 

  86. Scheraga HA (1983) Recent progress in the theoretical treatment of protein folding. Biopolymers 22:1–14

    Article  Google Scholar 

  87. Scheraga HA, Liwo A, Ołdziej S, Czaplewski C, Pillardy J, Ripoll DR, Vila JA, Kaźmierkiewicz R, Saunders JA, Arnautova YA, Jagielska A, Chinchio M, Nanias M (2004) The protein folding problem: global optimization of force fields. Front Biosci 9:3296–3323

    Article  Google Scholar 

  88. Simon I, Némethy G, Scheraga HA (1978) Conformational energy calculations of the effects of sequence variations on the conformations of two tetrapeptides. Macromolecules 11:797–804

    Article  Google Scholar 

  89. Sippl MJ, Némethy G, Scheraga HA (1984) Intermolecular potentials from crystal data. 6. Determination of empirical potentials for O-H⋯O-C hydrogen bonds from packing configurations. J Phys Chem 88:6231–6233

    Article  Google Scholar 

  90. Vásquez M, Némethy G, Scheraga HA (1983) Computed conformational states of the 20 naturally occurring amino acid residues and of the prototype residue a-aminobutyric acid. Macromolecules 16:1043–1049

    Article  Google Scholar 

  91. Vásquez M, Scheraga HA (1985) Use of buildup and energy‐minimization procedures to compute low-energy structures of the backbone of enkephalin. Biopolymers 24:1437–1447

    Article  Google Scholar 

  92. Vásquez M, Scheraga HA (1988) Calculation of protein conformation by the build-up procedure. Application to bovine pancreatic trypsin inhibitor using limited simulated nuclear magnetic resonance data. J Biomol Struct Dyn 5:705–755

    Google Scholar 

  93. Vásquez M, Scheraga HA (1988) Variable‐target‐function and build-up procedures for the calculation of protein conformation. Application to bovine pancreatic trypsin inhibitor using limited simulated nuclear magnetic resonance data. J Biomol Struct Dyn 5:757–784

    Google Scholar 

  94. Vila JA, Ripoll DR, Scheraga HA (2003) Atomically detailed folding simulation of the B domain of staphylococcal protein A from random structures. Proc Natl Acad Sci USA 100:14812–14816

    Article  Google Scholar 

  95. Wada A (1976) The α‑helix as an electric macro-dipole. Adv Biophys 9:1–63

    MathSciNet  Google Scholar 

  96. Wawak RJ, Gibson KD, Liwo A, Scheraga HA (1996) Theoretical prediction of a crystal structures. Proc Natl Acad Sci USA 93:1743–1746

    Article  Google Scholar 

  97. Wawak RJ, Pillardy J, Liwo A, Gibson KD, Scheraga HA (1998) The diffusion equation and distance scaling methods of global optimization; applications to crystal structure prediction. J Phys Chem 102:2904–2918

    Google Scholar 

  98. Zimmerman SS, Pottle MS, Némethy G, Scheraga HA (1977) Conformational analysis of the twenty naturally occurring amino acid residues using ECEPP. Macromolecules 10:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Ripoll, D.R., Liwo, A., Scheraga, H.A. (2008). Global Optimization in Protein Folding . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_246

Download citation

Publish with us

Policies and ethics