Resource Exploration | SpringerLink
Skip to main content

Resource Exploration

  • Reference work entry
  • First Online:
Encyclopedia of Remote Sensing

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 361 Accesses

Synonyms

Mineral exploration Nonrenewable resource exploration; Oil and gas exploration

Definition

Use of remote sensing technology to directly or indirectly explore for occurrences of specific nonrenewable resources.

Remote sensing resource exploration

Introduction

Nonrenewable resources are a key part of daily life. Materials as varied as salt, silicon, clays, and diamonds are used in many products. Metals including lead, silver, copper, molybdenum, gold, and many others are used daily for both basic needs and in modern conveniences. Oil and gas provide power for automobiles and other transportation, lighting and heating, and manufacturing.

Classical resource exploration typically utilizes field geologic mapping of the physical characteristics of rocks and soils such as outcrop exposure, mineralogy, weathering characteristics, and geochemical and/or geophysical signatures to determine the nature and distribution of geologic units and associated resources. Structural/geomorphic...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 42899
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 42899
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Asner, G. P., and Green, R. O., 2001. Imaging spectroscopy measures desertification in the Southwest U.S. and Argentina. Eos. Trans. AGU, 80, 601–605, doi:10.1029/01EO00346. http://dx.doi.org/10.1029/01EO00346 (September 2012).

    Google Scholar 

  • Boardman, J. W., and Huntington, J. H., 1996. Mineral mapping with 1995 AVIRIS data. In Summaries of the 6th Annual JPL Airborne Earth Science Workshop, JPL Pub. 96–4, AVIRIS Workshop, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, Vol. 1, pp. 9–11.

    Google Scholar 

  • Boardman, J. W., and Kruse, F. A., 1994. Automated spectral analysis: A geologic example using AVIRIS data, north Grapevine Mountains, Nevada. In Proceedings, Tenth Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan, Ann Arbor, MI, pp. I-407–I-418.

    Google Scholar 

  • Boardman, J. W., and F. A. Kruse, 2011, Analysis of Imaging Spectrometer Data Using N-Dimensional Geometry and A Mixture-Tuned Matched Filtering (MTMF) Approach, Transactions on Geoscience and Remote Sensing (TGARS), Special Issue on Spectral Unmixing of Remotely Sensed Data, 49(11), 4138–4152.

    Google Scholar 

  • Boardman, J. W., Kruse, F. A., and Green, R. O., 1995. Mapping target signatures via partial unmixing of AVIRIS data. In Summaries, Fifth JPL Airborne Earth Science Workshop, JPL Publication 95–1, Vol. 1, pp. 23–26.

    Google Scholar 

  • Broili, C., French, G. M., Shaddrick, D. R., and Weaver, R. R., 1988. Geology and gold mineralization of the Gold Bar deposit, Eureka county, Nevada. In Bulk Mineable Precious Metal Deposits of the Western United States, GSN Symposium Proceedings, pp. 57–72.

    Google Scholar 

  • Clark, R. N., Swayze, G. A., Gallagher, A., King, T. V. V., and Calvin, W. M., 1993a. The U. S. Geological Survey Digital Spectral Library: Version 1: 0.2 to 3.0 μm. Washington, DC: U.S. Government Printing Office. U. S. Geological Survey, Open File Report 93–592, p. 1340. http://speclab.cr.usgs.gov (September 2012).

  • Clark, R. N., Swayze, G. A., and Gallagher, Al, 1993b. Mapping Minerals with Imaging Spectroscopy. Washington, DC: U.S. Government Printing Office. U.S. Geological Survey Bulletin 2039B, pp. 141–150.

    Google Scholar 

  • Clark, R. N., Swayze, G. A., Rowan, L. C., Livo, K. E., and Watson, K., 1996. Mapping surficial geology, vegetation communities, and environmental materials in our national parks: The USGS imaging spectroscopy integrated geology, ecosystems, and environmental mapping project. In Summaries of the 6th Annual JPL Airborne Earth Science Workshop, JPL Pub. 96–4. AVIRIS Workshop, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, Vol. 1, pp. 55–56.

    Google Scholar 

  • Cox, J. E., 1962. Patrick Draw field and Adjacent Areas, Sweetwater County, Wyoming. Billings Geol. Soc. Paper No. 1, pp. 1–17, Montana Geological Society (2010).

    Google Scholar 

  • Crowley, J. K., 1993. Mapping playa evaporite mineral with AVIRIS data: a first report from Death Valley, California. Remote Sensing of Environment, 44(2–3), 337–356.

    Google Scholar 

  • Crowley, J. K., and Zimbelman, D. R., 1996. Mapping hydrothermally altered rock on Mount Rainier, Washington, DC: Application of AVIRIS data to volcanic hazard assessments. In Summaries of the 6th Annual JPL Airborne Earth Science Workshop, JPL Pub. 96–4. AVIRIS Workshop, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, Vol. 1, pp. 63–66.

    Google Scholar 

  • Cudahy, T. J., J. Wilson, R. Hewson, K. Okada, P. Linton, P. Harris, M. Sears, and J. A. Hackwell, 2001, Mapping Porphyry-Skarn Alteration at Yerington, Nevada, Using Airborne Hyperspectral VNIR-SWIR-TIR Imaging Data, in Proceedings IGARSS Geoscience and Remote Sensing International Symposium, 2, 631–633.

    Google Scholar 

  • De Beukelaer, S. M., 2003. Remote Sensing Analysis of Natural Oil and Gas Seeps on The Continental Slope of The Northern Gulf of Mexico. Unpublished PhD thesis, Texas, Texas A&M University, 117 p. (http://txspace.tamu.edu/bitstream/handle/1969.1/1164/etd-tamu-2003B-2003070315-De%20B-1.pdf?sequence = 1)(September 2012).

  • Ellis, J. M., Davis, H. H., and Zamudio, J. A., 2001. Exploring for onshore oil seeps with hyperspectral imaging. Oil and Gas Journal, 99(37), 49–58.

    Google Scholar 

  • Farrand, W. H., 1997. Identification and mapping of ferric oxide and oxyhydroxide minerals in imaging spectrometer data of Summitville, Colorado, U.S.A., and the surrounding San Juan Mountains. International Journal of Remote Sensing, 18(7), 1543–1552.

    Google Scholar 

  • Fujisada, H., Sakuma, F., Ono, A., and Kudoh, M., 1998. Design and preflight performance of ASTER instrument protoflight model. IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1152–1160, doi:10.1109/36.701022. http://dx.doi.org/10.1109/36.701022 (September 2012).

  • Gao, B., and Goetz, A. F. H., 1990. Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data. Journal of Geophysical Research, 95(D4), 3549–3564.

    Google Scholar 

  • Gao, B., Montes, M. J., Davis, C. O., and Goetz, A. F. H., 2009. Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sensing of Environment, 113, 517–524.

    Google Scholar 

  • Goetz, A. F. H., Vane, G., Solomon, J. E., and Rock, B. N., 1985. Imaging spectrometry for earth remote sensing. Science, 228, 1147–1153.

    Google Scholar 

  • Green, R. O., Eastwood, M. L., and Sarture, C. M., 1998. Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS). Remote Sensing of Environment, 65(3), 227–248, doi:10.1016/S0034-4257(98)00064-9. http://dx.doi.org/10.1016/S0034-4257(98)00064-9 doi:10.1016/S0034-4257%2898%2900064-9 (September 2012).

  • Green, R. O., Chrien, T. G., and Pavri, B., 2003. On-orbit determination of the radiometric and spectral calibration of Hyperion using ground, atmospheric and AVIRIS underflight measurements. IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1194–1203, doi:10.1109/TGRS.2003.813204. http://dx.doi.org/10.1109/TGRS.2003.813204 (September 2012).

  • Hook, S. J., 1990. The combined use of multispectral remotely sensed data from the short wave infrared (SWIR) and thermal infrared (TIR) for lithological mapping and mineral exploration. In Proceedings, Fifth Australasian Remote Sensing Conference, Perth, Western Australia, 1, pp. 371–380.

    Google Scholar 

  • Hook, S. J., Myers, J. J., Thome, K. J., Fitzgerald, M., and Kahle, A. B., 2001. The MODIS/ASTER airborne simulator (MASTER) – a new instrument for earth science studies. Remote Sensing of Environment, 76, 93–102, doi:10.1016/S0034-4257(00)00195-4. http://dx.doi.org/10.1016/S0034-4257(00)00195-4 doi:10.1016/S0034-4257%2800%2900195-4 (September 2012).

  • Hubbard, B. E., and Crowley, J. K., 2001. Alteration mineral mapping in the Central Andes using Hyperion, ALI and ASTER. Geological Society of America, 33(6), A-319. Abstracts Programs, https://gsa.confex.com/gsa/2001 AM/finalprogram/abstract_22837.htm(September 2012).

  • JPL ASTER Website, 2012. http://asterweb.jpl.nasa.gov/instrument.asp (September 2012).

  • Kahle, A. B., Palluconi, F. D., Hook, S. J., Realmuto, V. J., and Bothwell, G., 1991. The advanced spaceborne thermal emission and reflectance radiometer (ASTER). International Journal of Imaging Systems and Technology, doi:10.1002/ima.1850030210.

    Article  Google Scholar 

  • Khan, S. D., and Jacobson, S., 2008. Remote sensing and geochemistry for detecting hydrocarbon microseepages. Geological Society of America, 120(1–2), 96–105, doi:10.1130/0016-7606(2008)120[96:RSAGFD]2.0.CO;2.

    Google Scholar 

  • Kruse, F. A., 1988. Use of Airborne Imaging Spectrometer data to map minerals associated with hydrothermally altered rocks in the northern Grapevine Mountains, Nevada and California. Remote Sensing of Environment, 24(1), 31–51.

    Google Scholar 

  • Kruse, F. A., 1996. Mineral mapping for environmental hazards assessment using AVIRIS data, Leadville, Colorado. In Proceedings, 11th Thematic Conference, Applied Geologic Remote Sensing, February, 27–29, 1996. Ann Arbor, MI: Environmental Research Institute of Michigan (ERIM), pp. II-526–II-533.

    Google Scholar 

  • Kruse, F. A., 1999. Mapping hot spring deposits with AVIRIS at steamboat springs, Nevada. In Proceedings of the 8th JPL Airborne Earth Science Workshop: Jet Propulsion Laboratory Publication 99–17, Pasadena, CA, pp. 239–246.

    Google Scholar 

  • Kruse, F. A., 2000. Mapping active and fossil hot springs systems using AVIRIS, HYMAP, TIMS and MASTER (Abst). In Proceedings, 14th Thematic Conference, Applied Geologic Remote Sensing, November 6–8, 2000, Las Vegas, NV. Ann Arbor, MI, Environmental Research Institute of Michigan (ERIM), p. 122.

    Google Scholar 

  • Kruse, F. A., 2002. Combined SWIR and LWIR mineral mapping using MASTER/ASTER. In Proceedings, IGARSS 2002, June 24–28, 2002, Toronto, Canada. (Published on CD ROM – Paper Int1_B15_04, ISBN: 0-7803-7537-8. Also in hardcopy, v. IV, p. 2267–2269, IEEE Operations Center, Piscataway, NJ).

    Google Scholar 

  • Kruse, F. A., 2004. Comparison of ATREM, ACORN, and FLAASH atmospheric corrections using low-altitude AVIRIS data of Boulder, Colorado. In Proceedings 13th JPL Airborne Geoscience Workshop, Jet Propulsion Laboratory, 31 March–2 April 2004, Pasadena, CA.

    Google Scholar 

  • Kruse, F. A., 2012. Mapping surface mineralogy using imaging spectrometry. Geomorphology, 137(1), 41–56.

    Google Scholar 

  • Kruse, F. A., Lefkoff, A. B., and Dietz, J. B., 1993. Expert system-based mineral mapping in northern Death Valley, California/Nevada using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing of Environment, 44, 309–336. Special issue on AVIRIS, May–June 1993.

    Google Scholar 

  • Kruse, F. A., Boardman, J. W., and Huntington, J. F., 1999. Fifteen Years of hyperspectral data: northern Grapevine Mountains, Nevada. In Proceedings of the 8th JPL Airborne Earth Science Workshop: Jet Propulsion Laboratory Publication, JPL Publication 99–17, pp. 247–258.

    Google Scholar 

  • Kruse, F. A., Boardman, J. W., and Huntington, J. F., 2003. Evaluation and validation of EO-1 hyperion for mineral mapping. IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1388–1400, doi:10.1109/TGRS.2003.812908. http://dx.doi.org/10.1109/TGRS.2003.812908 (September 2012).

  • Kruse, F. A., Perry, S. L., and Caballero, A., 2006. District-level mineral survey using airborne hyperspectral data, Los Menucos, Argentina. Annals of Geophysics (Annali di Geofisica), 49(1), 83–92.

    Google Scholar 

  • Lang, H. R., and Nadeau, P. H., 1984. Petroleum commodity report. In Abrams et al. (eds.), The Joint NASA/GeoSat Test Case Project Final Report. Tulsa, OK: The American Association of Petroleum Geologists Special Publication 2, part 2, pp. 10–1 to 10–28.

    Google Scholar 

  • Lang, H. R., Alderman, W. H., and Sabins, F. F., 1984. Patrick Draw, Wyoming, Petroleum test case report. In Abrams (ed.), The Joint NASA/GeoSat Test Case Project Final Report. Tulsa, OK: The American Association of Petroleum Geologists Special Publication 2, part 2, pp. 11–1 to 11–112.

    Google Scholar 

  • Lang, H. R., Adams, S. L., Conel, J. E., McGuffie, B. A., Paylor, E. D., and Walker, R. E., 1987. Multispectral remote sensing as stratigraphic tool, Wind River Basin and Big Horn Basin areas, Wyoming. American Association of Petroleum Geologists Bulletin, 71(4), 389–402.

    Google Scholar 

  • Lyon, R. J. P., 1964. Evaluation of infrared spectrophotometry for compositional analysis of lunar and planetary soils, Part II: Rough and Powdered Surfaces. In NASA contractor Report CR-100, 262 p. Available at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19650001173_1965001173.pdf (September 2012).

  • MacDonald, I. R., Guinasso, N. L., Ackleson, S. G., Amos, J. F., Duckworth, R., Sassen, R., and Brooks, J. M., 1993. Natural oil slicks in the Gulf of Mexico visible from space. Journal of Geophysical Research, 98(C9), 16351–16364.

    Google Scholar 

  • MacDonald, I. R., Reilly, J. F., Best, S. E., Venkataramaiah, R., Sassen, R., Guinasso, N. L., and Amos, J., 1996. Remote sensing inventory of active seeps and chemosynthetic communities in the Northern Gulf of Mexico. Hydrocarbon migration and its near-surface expression. AAPG Memoir, 66, 27–37.

    Google Scholar 

  • Mars, J. C., and Rowan, L. C., 2006. Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometers (ASTER) data and logical operator algorithms. Geosphere, 2(3), 161–186, doi:10.1130/GES00044.1.

    Article  Google Scholar 

  • McCubbin, D. G., and Brady, M. J., 1963. Depositional environment of the Almond reservoirs, Patrick Draw field, Wyoming. The Mountain Geologist, 6, 3–36.

    Google Scholar 

  • NASA Goddard EO-1, 2012. Website: http://eo1.gsfc.nasa.gov/ (September, 2012).

  • Nevada Bureau of Mines (2008). (http://www.nbmg.unr.edu/geothermal/site.php?sid=steamboathotsprings) (September 2012).

  • Pearlman, J. S., Barry, P. S., Segal, C. C., Shepanski, J., Beiso, D., and Carman, S. L., 2003. Hyperion, a space-based imaging spectrometer. IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1160–1173, doi:10.1109/TGRS.2003.815018. http://ieeexplore.ieee.org/xpl/login.jsp?tp = &arnumber = 1220223 (September 2012) (September 2012).

  • Pieters, C. M., and Mustard, J. M., 1988. Exploration of crustal/mantle material for the earth and moon using reflectance spectroscopy. Remote Sensing of Environment, 24, 151–178.

    Google Scholar 

  • Prost, G. L., 2001. Remote Sensing for Geologists, 2nd edn. New York: Gordon and Breach, p. 374. ISBN 90-5702-629-5.

    Google Scholar 

  • Reston, M., and Cocks, T., 1998. Mapping mineralogy of the Mt. Fitton area, Flinders Ranges, South Australia, using HyMap airborne imaging spectrometer data. In Proceedings 9th Australasian Remote Sensing Conference, Sydney, July 1998.

    Google Scholar 

  • Richers, D. M., Reed, R. J., Horstman, K. C., Michels, G. D., Baker, R. N., Lundell, L., and Marrs, R. W., 1982. Landsat and soil-gas geochemical study of Patrick Draw Oil Field, Sweetwater County, Wyoming. American Association of Petroleum Geologists Bulletin, 66, 903–922.

    Google Scholar 

  • Richers, D. M., Jones, V. T., Matthews, M. D., Maciolek, J., Pirkle, R. J., and Sides, W. C., 1986. The 1983 Landsat soil-gas geochemical survey of Patrick Draw Area, Sweetwater County, Wyoming. American Association of Petroleum Geologists Bulletin, 70, 869–887.

    Google Scholar 

  • Rowan, L. C., 1998. Analysis of simulated advanced spaceborne thermal emission and reflection (ASTER) radiometer data of the Iron Hill, Colorado, study area for mapping lithologies. Journal of Geophysical Research, 103(D24), 291–232.

    Google Scholar 

  • Rowan, L. C., and Mars, J. C., 2003. Lithologic mapping in the mountain pass, California area using advanced spaceborne thermal emission and reflection spectrometer (ASTER) data. Remote Sensing of Environment, 84, 350–366, doi:10.1016/S0034-4257(02)00127-X. http://dx.doi.org/10.1016/S0034-4257(02)00127-X (September 2012).

  • Rowan, L. C., Bowers, T. L., Crowley, J. K., Anton-Pacheco, C., Gumiel, P., and Kingston, M. J., 1996. Analysis of airborne visible-infrared imaging spectrometer (AVIRIS) data of the Iron Hill, Colorado, carbonatite-alkalic igneous complex. Economic Geology and the Bulletin of the Society of Economic Geologists, 90, 1966–1982.

    Google Scholar 

  • Rowan, L. C., Hook, S. J., Abrams, M. J., and Mars, J. C., 2003. Mapping hydrothermally altered rocks at Cuprite, Nevada, using the advanced spaceborne thermal emission and reflection radiometer (ASTER), a new satellite-imaging system. Economic Geology and the Bulletin of the Society of Economic Geologists, 98(5), 1019–1027.

    Google Scholar 

  • Rowan, L. C., Simpson, C. J., and Mars, J. C., 2004. Hyperspectral analysis of the ultramafic complex and adjacent lithologies at Mordo NT, Australia. Remote Sensing of Environment, 91, 419–431.

    Google Scholar 

  • Rowan, L. C., Simpson, C. J., and Mars, J. C., 2005. Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sensing of Environment, 99, 105–126.

    Google Scholar 

  • Sabins, F. F., 1997. Remote Sensing Principles and Interpretation, 3rd edn. Long Grove: Waveland, p. 494. ISBN 1577665074.

    Google Scholar 

  • Salisbury, J. W., and D’Aria, D. M., 1992. Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Remote Sensing of Environment, 42, 83–106.

    Google Scholar 

  • Salisbury, J. W., Walter, L. S., Vergo, N., and D’Aria, D. M., 1988. Infrared (2.1–13.5 micrometers) Spectra. Washington, DC: U.S. Govt. Printing Office. U. S. Geological Survey Open-file Report 88–686.

    Google Scholar 

  • Salisbury, J. W., Walter, L. S., Vergo, N., and D’Aria, D. M., 1992. Infrared (2.1– 25 micrometers) Spectra of Minerals. Baltimore, MD: Johns Hopkins University Press. 294 p.

    Google Scholar 

  • Schoen, R., and White, D. E., 1967. Hydrothermal Alteration of Basaltic Andesite and Other Rocks in Drill Hole GS-6, Steamboat Springs, Nevada. Washington, DC: U.S. Govt. Printing Office. U.S. Geological Survey Professional Paper 575-B, pp. 110–119.

    Google Scholar 

  • Schoen, R., White, D. E., and Hemley, J. J., 1974. Argillization by descending acid at Steamboat Springs, Nevada. Clays and Clay Minerals, 22, 1–22.

    Google Scholar 

  • Scott, L. F., McCoy, R. M., and Wullstein, L. H., 1989. Anomaly may not reflect hydrocarbon seepage: Patrick Draw field, Wyoming. AAPG Bulletin, 73(7), 925–934. revisited: American Association of Petroleum Geologists.

    Google Scholar 

  • Sigvaldason, G. E., and White, D. E., 1962. Hydrothermal Alteration in Drill Holes GS-5 and GS-7, Steamboat Springs, Nevada. Washington, DC: U.S. Govt. Printing Office. U.S. Geological Survey Professional Paper 450-D, pp. D113–D117.

    Google Scholar 

  • Silberman, M. L., White, D. E., Keith, T. E. C., and Docktor, R. D., 1979. Duration of hydrothermal activity at Steamboat Springs, Nevada, from ages of the spatially associated volcanic rock. Washington, DC: U.S. Govt. Printing Office. U. S. Geological Survey Professional Paper 458-D. 14 p.

    Google Scholar 

  • Swayze, G. A., Smith, K. S., Clark, R. N., Sutley, S. J., Pearson, R. M., Vance, J. S., Hageman, P. L., Briggs, P. H., Meier, A. L., Singleton, M. J., and Roth, S., 2000. Using imaging spectroscopy to map acidic mine waste. Environmental Science and Technology, 34, 47–54.

    Google Scholar 

  • Taranik, D. L., and Kruse, F. A., 1989. Iron mineral reflectance in geophysical and environmental research imaging spectrometer (GERIS) data. In Proceedings, International Symposium on Remote Sensing of Environment, Thematic Conference on Remote Sensing for Exploration Geology, 7th, October 2–6, 1989, Calgary, Alberta, Canada. Ann Arbor: Environmental Research Institute of Michigan, pp. 445–458.

    Google Scholar 

  • Ungar, S., Pearlman, J., Mendenhall, J., and Reuter, D., 2003. Overview of the Earth observing one (EO-1) mission. IEEE Transactions on Geoscience and Remote Sensing, 41(6), doi:10.1109/TGRS.2003.815999. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber = 1220222(September 2012).

  • USGS E0-1, 2012. Website: http://eo1.usgs.gov/ (September 2012).

  • van der Meer, F., van Dijk, P., van der Werff, H., and Yang, H., 2002. Remote sensing and petroleum seepage; a review and case study. Terra Nova, 14(1), 1–17.

    Google Scholar 

  • Weimer, R. J., 1966. Time-stratigraphic analysis and petroleum accumulations, Patrick Draw field, Sweetwater County, Wyoming. AAPG Bulletin, 50(10), 2150–2175.

    Google Scholar 

  • White, D. E., 1955. Thermal springs and epithermal ore deposits. Economic Geology, 15, 99–154.

    Google Scholar 

  • White, D. E., 1967. Some principles of geyser activity, mainly from Steamboat Springs, Nevada. American Journal of Science, 265(8), 641–684.

    Google Scholar 

  • White, D. E., 1968. Hydrology, Activity, and Heat Flow of the Steamboat Springs Thermal Systems, Washoe County, Nevada. Washington, DC: U.S. Govt. Printing Office. U. S. Geological Survey Professional Paper 458-C. 109 p.

    Google Scholar 

  • White, D. E., 1981. Active geothermal systems and hydrothermal ore deposits. Economic Geology, 75, 392–423.

    Google Scholar 

  • White, D. E., Anderson, E. T., and Grubbs, D. K., 1963. Geothermal brine well/mile-deep drill hole may tap ore-bearing magmatic water and rocks undergoing metamorphism. Science, 139, 919–922.

    Google Scholar 

  • White, D. E., Thompson, G. A., and Sanberg, C. S., 1964. Rocks, Structure, and Geologic History of Steamboat Springs thermal area, Washoe County, Nevada. Washington, DC: U.S. Govt. Printing Office. U. S. Geological Survey Professional Paper 458-B. 63 p.

    Google Scholar 

  • White, D. E., Heropoulos, C., and Fournier, R. O., 1992. Gold and other minor elements associated with the hot springs and geysers of Yellowstone National Park, Wyoming, supplemented with data from Steamboat Springs, Nevada. Denver, CO: U.S. Geological Survey. U.S. Geological Survey Bulletin 2001. 19 p.

    Google Scholar 

  • Yamaguchi, A. B., Kahle, H., Tsu, T. K., and Pniel, M., 1998. Overview of advanced spaceborne thermal emission reflectance radiometer. IEEE Transactions on Geoscience and Remote Sensing, 36, 1062–1071, doi:10.1109/36.700991. http://dx.doi.org/10.1109/36.700991 (September 2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred A. Kruse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Kruse, F.A., Perry, S.L. (2014). Resource Exploration. In: Njoku, E.G. (eds) Encyclopedia of Remote Sensing. Encyclopedia of Earth Sciences Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36699-9_161

Download citation

Publish with us

Policies and ethics