Neural Networks For Data Mining | SpringerLink
Skip to main content

Neural Networks For Data Mining

  • Chapter
  • First Online:
Data Mining and Knowledge Discovery Handbook

Summary

Neural networks have become standard and important tools for data mining. This chapter provides an overview of neural network models and their applications to data mining tasks. We provide historical development of the field of neural networks and present three important classes of neural models including feedforward multilayer networks, Hopfield networks, and Kohonen’s self-organizing maps. Modeling issues and applications of these models for data mining are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 43471
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adya M., Collopy F. (1998), How effective are neural networks at forecasting and prediction? a review and evaluation. Journal of forecasting; 17:481-495.

    Article  Google Scholar 

  • Agrawal D., Schorling C. (1996), Market share forecasting: an empirical comparison of artificial neural networks and multinomial logit model. Journal of Retailing; 72:383-407.

    Article  Google Scholar 

  • Ahn H., Choi E., Han I. (2007), Extracting underlying meaningful features and canceling noise using independent component analysis for direct marketing. Expert Systems with Applications,; 33: 181-191

    Article  Google Scholar 

  • Azoff E. M. (1994), Neural Network Time Series Forecasting of Financial Markets. Chichester: John Wiley & Sons, .

    Google Scholar 

  • Bishop M. (1995), Neural Networks for Pattern Recognition. Oxford: Oxford University Press, .

    Google Scholar 

  • Boone D., Roehm M. (2002), Retail segmentation using artificial neural networks. International Journal of Research in Marketing; 19:287-301.

    Article  Google Scholar 

  • Brockett P.L., Xia X.H., Derrig R.A. (1998), Using Kohonen’s self-organizing feature map to uncover automobile bodily injury claims fraud. The Journal of Risk and Insurance; 65: 24

    Article  Google Scholar 

  • Changchien S.W., Lu T.C. (2001), Mining association rules procedure to support on-line recommendation by customers and products fragmentation. Expert Systems with Applications; 20(4):325-335.

    Article  Google Scholar 

  • Chen T., Chen H. (1995), Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems,Neural Networks; 6:911-917.

    Article  Google Scholar 

  • Chen F.L., Liu S.F. (2000), A neural-network approach to recognize defect spatial pattern in semiconductor fabrication. IEEE Transactions on Semiconductor Manufacturing; 13:366-37

    Google Scholar 

  • Chen S.K., Mangiameli P.,West D. (1995), The comparative ability of self-organizing neural networks to define cluster structure. Omega; 23:271-279.

    Article  Google Scholar 

  • Chen H., Zhang Y., Houston A.L. (1998), Semantic indexing and searching using a Hopfield net. Journal of Information Science; 24:3-18.

    Article  Google Scholar 

  • Cheng B., Titterington D. (1994), Neural networks: a review from a statistical perspective. Statistical Sciences; 9:2-54.

    Article  MATH  MathSciNet  Google Scholar 

  • Chen K.Y., Wang, C.H. (2007), Support vector regression with genetic algorithms in forecasting tourism demand. Tourism Management; 28:215-226.

    Article  Google Scholar 

  • Chiang W.K., Zhang D., Zhou L. (2006), Predicting and explaining patronage behavior toward web and traditional stores using neural networks: a comparative analysis with logistic regression. Decision Support Systems; 41:514-531.

    Article  Google Scholar 

  • Church K. B., Curram S. P. (1996), Forecasting consumers’ expenditure: A comparison between econometric and neural network models. International Journal of Forecasting; 12:255-267

    Article  Google Scholar 

  • Ciampi A., Lechevallier Y. (1997), Statistical models as building blocks of neural networks. Communications in Statistics: Theory and Methods; 26:991-1009.

    Article  MATH  MathSciNet  Google Scholar 

  • Crone S.F., Lessmann S., Stahlbock R. (2006), The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing. European Journal of Operational Research; 173:781-800

    Article  MATH  MathSciNet  Google Scholar 

  • Cybenko G. (1989), Approximation by superpositions of a sigmoidal function. Mathematical Control Signals Systems; 2:303–314.

    Article  MATH  MathSciNet  Google Scholar 

  • Dai Y., Nakano Y. (1998), Recognition of facial images with low resolution using a Hopfield memory model. Pattern Recognition; 31:159-167.

    Article  Google Scholar 

  • Dasu T., Johnson T. (2003), Exploratory Data Mining and Data Cleaning. New Jersey:Wiley,

    Book  MATH  Google Scholar 

  • De Groot D., Wurtz D. (1991), Analysis of univariate time series with connectionist nets: A case study of two classical examples. Neurocomputing;3:177-192.

    Article  Google Scholar 

  • Deboeck G., Kohonen T. (1998), Visual Explorations in Finance with Self-organizing Maps. London: Springer-Verlag, .

    MATH  Google Scholar 

  • Delen D., Sharda R., Bessonov M. (2006), Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks Accident Analysis and Prevention; 38:434-444.

    Article  Google Scholar 

  • Dhar V., Chou D. (2001), A comparison of nonlinear methods for predicting earnings surprises and returns. IEEE Transactions on Neural Networks; 12:907-921.

    Article  Google Scholar 

  • Dia H. (2001), An object-oriented neural network approach to short-term traffic forecasting. European Journal of Operation Research; 131:253-261.

    Article  MATH  Google Scholar 

  • Dittenbach M., Rauber A., Merkl, D. (2002), Uncovering hierarchical structure in data using the growing hierarchical self-organizing map. Neurocompuing; 48:199-216.

    Article  MATH  Google Scholar 

  • Doganis P., Alexandridis A., Patrinos P., Sarimveis H. (2006), Time series sales forecasting for short shelf-life food products based on artificial neural networks and evolutionary computing. Journal of Food Engineering; 75:196-204.

    Article  Google Scholar 

  • Dutot A.L., Rynkiewicz J., Steiner F.E., Rude J. (2007), A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions Modelling and Software; 22:1261-1269.

    Article  Google Scholar 

  • Dutta S., Shenkar S. (1993), “Bond rating: a non-conservative application of neural networks.” In Neural Networks in Finance and Investing, Trippi, R., and Turban, E., eds. Chicago: Probus Publishing Company.

    Google Scholar 

  • Enke D., Thawornwong S. (2005), The use of data mining and neural networks for forecasting stock market returns. Expert Systems with Applications; 29:927-940.

    Article  Google Scholar 

  • Evans O.V.D. (1997), Discovering associations in retail transactions using neural networks. ICL Systems Journal; 12:73-88.

    Google Scholar 

  • Fahlman S., Lebiere C. (1990), “The cascade-correlation learning architecture.” In Advances in Neural Information Processing Systems, Touretzky, D., ed. .

    Google Scholar 

  • Fletcher R. (1987), Practical Methods of Optimization 2nd. Chichester: John Wiley & Sons,

    Google Scholar 

  • Frean M. (1990), The Upstart algorithm: a method for constructing and training feed-forward networks. Neural Computations; 2:198-209.

    Article  Google Scholar 

  • Funahashi K. (1998), Multilayer neural networks and Bayes decision theory. Neural Networks; 11:209-213.

    Article  Google Scholar 

  • Gallinari P., Thiria S., Badran R., Fogelman-Soulie, F. (1991), On the relationships between discriminant analysis and multilayer perceptrons. Neural Networks; 4:349-360.

    Article  Google Scholar 

  • Geman S., Bienenstock E., Doursat T. (1992), Neural networks and the bias/variance dilemma. Neural Computation; 5:1-58.

    Article  Google Scholar 

  • Gorr L. (1994), Research prospective on neural network forecasting. International Journal of Forecasting; 10:1-4.

    Article  Google Scholar 

  • He H., Wang J., Graco W., Hawkins S. (1997), Application of neural networks to detection of medical fraud. Expert Systems with Applications; 13:329-336.

    Article  Google Scholar 

  • Hebb D.O. (1949), The Organization of Behavior. New York: Wiley.

    Google Scholar 

  • Hinton G.E. (1992), How neural networks learn from experience. Scientific American;9:145-151.

    Google Scholar 

  • Hornik K., Stinchcombe M., White H. (1989), Multilayer feedforward networks are universal approximators. Neural Networks; 2:359–366.

    Article  Google Scholar 

  • Hopfield J.J. (2558), (1982), Neural networks and physical systems with emergent collective computational abilities. Proceedings of National Academy of Sciences; 79:2554-2558.

    Google Scholar 

  • Hopfield J.J., Tank D.W. (1985), Neural computation of decisions in optimization problems. Biological Cybernetics; 52:141-152.

    MATH  MathSciNet  Google Scholar 

  • Hu J.Q., Rose, E. (1995), On-line fuzzy modeling by data clustering using a neural network. Advances in Process Control. , 4, 187-194.

    Google Scholar 

  • Huang J.S., Liu H.C. (2004), Object recognition using genetic algorithms with a Huang Z. Chen, H., Hsu, C.J. Chen, W.H. and Wu, S., Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision Support Systems; 37:543-558

    Article  Google Scholar 

  • Hopfield’s neural model (1997). Expert Systems with Applications 1997; 13: 191-199.

    Google Scholar 

  • Jain L.C., Vemuri V.R. (1999), Industrial Applications of Neural Networks. Boca Raton: CRC Press, .

    Google Scholar 

  • Kiang M.Y., Hu, M.Y., Fisher D.M. (2006), An extended self-organizing map network for market segmentation—a telecommunication example Decision Support Systems; 42:36-47.

    Article  Google Scholar 

  • Kiang M.Y., Kulkarni U.R., Tam K.Y. (1995), Self-organizing map network as an interactive clustering tool-An application to group technology. Decision Support Systems; 15:351- 374.

    Article  Google Scholar 

  • Kim T., Kumara S.R.T., (1997), Boundary defect recognition using neural networks. International Journal of Production Research; 35:2397-2412.

    Article  MATH  Google Scholar 

  • Kim T.Y., Oh K.J., Sohn K., Hwang C. (2004), Usefulness of artificial neural networks for early warning system of economic crisis. Expert Systems with Applications; 26:583-590.

    Article  Google Scholar 

  • Kirkos E., Spathis C., Manolopoulos Y., (2007), Data Mining techniques for the detection of fraudulent financial statements. Expert Systems with Applications; 32: 995-1003.

    Article  Google Scholar 

  • Kiviluoto K. (1998), Predicting bankruptcy with the self-organizing map. Neurocomputing; 21:203-224.

    Article  Google Scholar 

  • Klein B.D., Rossin D. F. (1999), Data quality in neural network models: effect of error rate and magnitude of error on predictive accuracy. Omega; 27:569-582.

    Article  Google Scholar 

  • Kohonen T. (1982), Self-organized formation of topologically correct feature maps. Biological Cybernetics; 43:59-69.

    Article  MATH  MathSciNet  Google Scholar 

  • Kolehmainen M., Martikainen H., Ruuskanen J. (2001), Neural networks and periodic components used in air quality forecasting. Atmospheric Environment; 35:815-825.

    Article  Google Scholar 

  • Law R. (2000), Back-propagation learning in improving the accuracy of neural networkbased tourism demand forecasting. Tourism Management; 21:331-340.

    Article  Google Scholar 

  • Lee D.L. (2002), Pattern sequence recognition using a time-varying Hopfield network. IEEE Transactions on Neural Networks; 13:330-343.

    Article  Google Scholar 

  • Lewis O.M., Ware J.A., Jenkins D. (1997), A novel neural network technique for the valuation of residential property. Neural Computing and Applications; 5:224-229.

    Article  Google Scholar 

  • Li W.J., Lee T., (2002), Object recognition and articulated object learning by accumulative Hopfield matching. Pattern Recognition; 35:1933-1948.

    Article  MATH  Google Scholar 

  • Lim G.S., Alder M., Hadingham P. (1992), Adaptive quadratic neural nets. Pattern Recognition Letters; 13: 325-329.

    Article  Google Scholar 

  • Lisboa P.J.G., Edisbury B., Vellido A. (2000), Business Applications of Neural Networks : The State-of-the-art of Real-world Applications. River Edge: World Scientific,

    Google Scholar 

  • McCulloch W., Pitts W. (1943), A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics; 5:115-133.

    Article  MATH  MathSciNet  Google Scholar 

  • Min S.H., Lee J., Han I. (2006), Hybrid genetic algorithms and support vector machines for bankruptcy prediction. Expert Systems with Applications; 31: 652-660.

    Article  Google Scholar 

  • Minsky M. L., Papert S. A. (1969), Perceptrons. MA: MIT press,.

    MATH  Google Scholar 

  • Miyake S., Kanaya F. (1991), A neural network approach to a Bayesian statistical decision problem. IEEE Transactions on Neural Networks; 2:538-540.

    Article  Google Scholar 

  • Mozer M.C., Wolniewics R. (2000), Predicting subscriber dissatisfaction and improving retention in the wireless telecommunication. IEEE Transactions on Neural Networks; 11:690-696

    Article  Google Scholar 

  • Nag A.K., Mitra A. (2002), Forecasting daily foreign exchange rates using genetically optimized neural networks. Journal of Forecasting; 21:501-512.

    Article  Google Scholar 

  • Nelson M., Hill T., Remus T., O’Connor, M. (1999), Time series forecasting using neural networks: Should the data be deseasonalized first? Journal of Forecasting; 18:359-367.

    Article  Google Scholar 

  • O’Connor N., Madden M.G. (2006), A neural network approach to predicting stock exchange movements using external factors. Knowledge-Based Systems; 19:371-378.

    Article  Google Scholar 

  • Paik J.K., Katsaggelos, A.K. (1992),Image restoration using a modified Hopfield neural network. IEEE Transactions on Image Processing; 1:49-63.

    Article  Google Scholar 

  • Pajares G., Cruz J.M., Aranda, J. (1998), Relaxation by Hopfield network in stereo image matching. Pattern Recognition; 31:561-574.

    Article  Google Scholar 

  • Panda C., Narasimhan V. (2007), Forecasting exchange rate better with artificial neural network. Journal of Policy Modeling; 29:227-236.

    Article  Google Scholar 

  • Parker D.B. (1985), Learning-logic: Casting the cortex of the human brain in silicon, Technical Report TR-47, Center for Computational Research in Economics and Management Science, MIT.

    Google Scholar 

  • Palmer A., Montaño J.J., Sesé, A. (2006), Designing an artificial neural network for forecasting tourism time series. Tourism Management; 27: 781-790.

    Article  Google Scholar 

  • Partovi F.Y., Anandarajan M. (2002), Classifying inventory using an artificial neural network approach. Computers and Industrial Engineering; 41:389-404.

    Article  Google Scholar 

  • Petersohn H. (1998), Assessment of cluster analysis and self-organizing maps. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems.; 6:139-149.

    Article  MATH  Google Scholar 

  • Prybutok V.R., Yi J., Mitchell D. (2000), Comparison of neural network models with ARIMA and regression models for prediction of Houston’s daily maximum ozone concentrations. European Journal of Operational Research; 122:31-40.

    Article  MATH  Google Scholar 

  • Qi M. (2001), Predicting US recessions with leading indicators via neural network models. International Journal of Forecasting; 17:383-401.

    Article  Google Scholar 

  • Qi M., Zhang G.P. (2001), An investigation of model selection criteria for neural network time series forecasting. European Journal of Operational Research; 132:666-680.

    Article  MATH  Google Scholar 

  • Qiao F., Yang H., Lam, W.H.K. (2001), Intelligent simulation and prediction of traffic flow dispersion. Transportation Research, Part B; 35:843-863.

    Article  Google Scholar 

  • Raudys S. (1998), Evolution and generalization of a single neuron: I., Single-layer perceptron as seven statistical classifiers Neural Networks; 11:283-296.

    Google Scholar 

  • Raudys S. (1998), Evolution and generalization of a single neuron: II., Complexity of statistical classifiers and sample size considerations. Neural Networks; 11:297-313.

    Article  Google Scholar 

  • Raviwongse R. Allada V., Sandidge T. (2000), Plastic manufacturing process selection methodology using self-organizing map (SOM)/fuzzy analysis. International Journal of Advanced Manufacturing Technology; 16:155-161.

    Article  Google Scholar 

  • Reed R. (1993), Pruning algorithms-a survey. IEEE Transactions on Neural Networks; 4:740-747.

    Article  Google Scholar 

  • Remus W., O’Connor M. (2001), “Neural networks for time series forecasting.” In Principles of Forecasting: A Handbook for Researchers and Practitioners, Armstrong, J. S. ed. Norwell:Kluwer Academic Publishers, 245-256.

    Google Scholar 

  • Reutterer T., Natter M. (2000), Segmentation ba sed competitive analysis with MULTICLUS and topology representing networks. Computers and Operations Research; 27:1227- 1247.

    Article  MATH  Google Scholar 

  • Richard, M. (1991), D., Lippmann, R., Neural network classifiers estimate Bayesian aposteriori probabilities. Neural Computation; 3:461-483.

    Google Scholar 

  • Ripley A. (1993), “Statistical aspects of neural networks.” In Networks and Chaos - Statistical and Probabilistic Aspects, Barndorff-Nielsen, O. E., Jensen J. L. and Kendall, W. S. eds. London: Chapman and Hall, 40-123.

    Google Scholar 

  • Ripley A. (1994), Neural networks and related methods for classification. Journal of Royal Statistical Society, Series B; 56:409-456.

    MATH  MathSciNet  Google Scholar 

  • Roh T. H. (2007), Forecasting the volatility of stock price index. Expert Systems with Applications; 33:916-922.

    Article  Google Scholar 

  • Rosenblatt F. (1958), The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review; 65:386-408.

    Article  MathSciNet  Google Scholar 

  • Rout S., Srivastava, S.P., Majumdar, J. (1998), Multi-modal image segmentation using a modified Hopfield neural network. Pattern Recognition; 31:743-750.

    Article  Google Scholar 

  • Rumelhart D.E., Hinton G.E., Williams R.J. (1986), “Learning internal representation by back-propagating errors.” In Parallel Distributed Processing: Explorations in the Microstructure of Cognition Press, Rumelhart, D.E., McCleland, J.L. and the PDP Research Group, eds. MA: MIT.

    Google Scholar 

  • Saad E.W., Prokhorov D.V., Wunsch, D.C. II. (1998), Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks. IEEE Transactions on Neural Networks; 9:456-1470.

    Article  Google Scholar 

  • Salcedo-Sanz S., Santiago-Mozos R.,Bousono-Calzon, C. (2004), A hybrid Hopfield network-simulated annealing approach for frequency assignment in satellite communications systems. IEEE Transactions on System, Man and Cybernetics, Part B:108-116.

    Google Scholar 

  • Sarle W.S. (1994), Neural networks and statistical models. Poceedings of the Nineteenth Annual SAS Users Group International Conference, Cary, NC: SAS Institute,.

    Google Scholar 

  • Schumacher M., Robner R., Vach W. (1996), Neural networks and logistic regression: Part I., Computational Statistics and Data Analysis; 21:661-682.

    Article  MATH  Google Scholar 

  • Smith K.A., Ng, A. (2003), Web page clustering using a self-organizing map of user navigation patterns. Decision Support Systems; 35:245-256.

    Article  Google Scholar 

  • Smith K.A., Willis R.J., Brooks M. (2000), An analysis of customer retention and insurance claim patterns using data mining: a case study. Journal of the Operational Research Society; 51:532-541.

    MATH  Google Scholar 

  • Soulie F.F., Gallinari P. (1998), Industrial Applications of Neural Networks. River Edge, NJ: World Scientific.

    Google Scholar 

  • Suganthan P.N., Teoh E.K., Mital D.P. (1995), Self-organizing Hopfield network for attributed relational graph matching. Image and Vision Computing; 13:61-71.

    Article  Google Scholar 

  • Sun Z.Z., Yu S. (1995), Improvement on performance of modified Hopfield neural network for image restoration. IEEE Transactions on Image processing; 4:683-692.

    Article  Google Scholar 

  • Suykens J.A.K., Vandewalle J.P.L., De Moor B.L.R. (1996), Artificial Neural Networks for Modeling and Control of Nonlinear Systems. Boston: Kluwer.

    Google Scholar 

  • Swanson N.R., White H. (1995), A model-selection approach to assessing the information in the term structure using linear models and artificial neural networks. Journal of Business and Economic Statistics; 13;265-275.

    Article  Google Scholar 

  • Tatem A.J., Lewis H.G., Atkinson P.M., Nixon M.S. (2002), Supre-resolution land cover pattern prediction using a Hopfield neural network. Remote Sensing of Environment; 79:1-14.

    Article  Google Scholar 

  • Temponi C., Kuo Y.F., Corley H.W. (1999), A fuzzy neural architecture for customer satisfaction assessment. Journal of Intelligent & Fuzzy Systems; 7:173-183.

    Google Scholar 

  • Thieme R.J., Song M., Calantone R.J. (2000), Artificial neural network decision support systems for new product developement project selection. Journal of Marketing Research; 37:543-558.

    Article  Google Scholar 

  • Vach W., Robner R., Schumacher M. (1996), Neural networks and logistic regression: Part I. Computational Statistics and Data Analysis; 21:683-701.

    Article  MATH  Google Scholar 

  • Wang T., Zhuang X., Xing X. (1992), Robust segmentation of noisy images using a neural network model. Image Vision Computing; 10:233-240.

    Article  Google Scholar 

  • Webb A.R., Lowe D., (1990), The optimized internal representation of multilayer classifier networks performs nonlinear discriminant analysis. Neural Networks; 3:367-375.

    Article  Google Scholar 

  • Werbos P.J., (1974), Beyond regression: New tools for prediction and analysis in the behavioral sciences. Ph.D. thesis, Harvard University, 1974.

    Google Scholar 

  • West D., (2000), Neural network credit scoring models. Computers and Operations Research; 27:1131-1152.

    Article  MATH  Google Scholar 

  • West P.M., Brockett P.L., Golden L.L., (1997), A comparative analysis of neural networks and statistical methods for predicting consumer choice. Marketing Science; 16:370-391.

    Article  Google Scholar 

  • Widrow B., Hoff M.E., (1960), Adaptive switching circuits, 1960 IRE WESCON Convention Record, New York: IRE Part 4 1960:96-104.

    Google Scholar 

  • Widrow B., Rumelhart D.E., Lehr M.A., (1994), Neural networks: applications in industry, business and science, Communications of the ACM; 37:93-105.

    Article  Google Scholar 

  • Wong B.K., Bodnovich T.A., Selvi Y., (1997), Neural network applications in business: A review and analysis of the literature (1988-1995). Decision Support Systems; 19:301-320.

    Article  Google Scholar 

  • Young S.S., Scott P.D., Nasrabadi, N.M., (1997), Object recognition using multilayer Hopfield neural network. IEEE Transactions on Image Processing; 6:357-372.

    Article  Google Scholar 

  • Zhang G.P., (2007), Avoiding Pitfalls in Neural Network Research. IEEE Transactions on Systems, Man, and Cybernetics; 37:3-16.

    Article  Google Scholar 

  • Zhang G.P., Hu M.Y., Patuwo B.E., Indro D.C., (1999), Artificial neural networks in bankruptcy prediction: general framework and cross-validation analysis. European Journal of Operational Research; 116:16-32.

    Article  MATH  Google Scholar 

  • Zhang G.P., Keil M., Rai A., Mann J., (2003), Predicting information technology project escalation: a neural network approach. European Journal of Operational Research 2003; 146:115–129.

    Article  MATH  Google Scholar 

  • Zhang G.P., Qi M. (2002), “Predicting consumer retail sales using neural networks.” In Neural Networks in Business: Techniques and Applications, Smith, K. and Gupta, J.eds. Hershey: Idea Group Publishing, 26-40.

    Google Scholar 

  • Zhang G.P., Patuwo E.P., Hu M.Y., (1998), Forecasting with artificial neural networks: the state of the art. International Journal of Forecasting; 14:35-62.

    Article  Google Scholar 

  • Zhang W., Cao Q., Schniederjans M.J., (2004), Neural Network Earnings per Share Forecasting Models: A Comparative Analysis of Alternative Methods. Decision Sciences; 35: 205–237.

    Article  Google Scholar 

  • Zhu Z., He H., Starzyk J.A., Tseng, C., (2007), Self-organizing learning array and its application to economic and financial problems. Information Sciences; 177:1180-1192.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Peter Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhang, G.P. (2009). Neural Networks For Data Mining. In: Maimon, O., Rokach, L. (eds) Data Mining and Knowledge Discovery Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09823-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09823-4_21

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09822-7

  • Online ISBN: 978-0-387-09823-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics