An Improved Approximation Algorithm for Minimum Size 2-Edge Connected Spanning Subgraphs | SpringerLink
Skip to main content

An Improved Approximation Algorithm for Minimum Size 2-Edge Connected Spanning Subgraphs

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1412))

Abstract

We give a \( \frac{{17}} {{12}} \) -approximation algorithm for the following NP- hard problem: Given a simple undirected graph, find a 2-edge connected span- ning subgraph that has the minimum number of edges. The best previous approximation guarantee was \( \frac{3} {2} \) . If the well known TSP \( \frac{4} {3} \) conjecture holds, then there is a \( \frac{4} {3} \) -approximation algorithm. Thus our main result gets half-way to this target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Carr and R. Ravi. A new bound for the 2-edge connected subgraph problem. In R. E. Bixby, E. A. Boyd, and R. Z. Ríos-Mercado, editors, Integer Programming and Combinatorial Optimization: Proceedings of the 6th International Conference on Integer Programming and Combinatorial Optimization, LNCS, Vol. 1412, pages 110–123. Springer, 1998. This volume.

    Google Scholar 

  2. J. Cheriyan and R. Thurimella. Approximating minimum-size k-connected spanning subgraphs via matching. Proc. 37th Annual IEEE Sympos. on Foundat. of Comput. Sci., pages 292–301, 1996.

    Google Scholar 

  3. N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman problem. Technical report, G.S.I.A., Carnegie-Mellon Univ., Pittsburgh, PA, 1976.

    Google Scholar 

  4. A. Frank. Conservative weightings and ear-decompositions of graphs. Combinatorica, 13:65–81, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  5. G. L. Frederickson and J. Ja’Ja’. On the relationship between the biconnectivity augmentation and traveling salesman problems. Theor. Comp. Sci., 19:189–201, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  6. N. Garg, V. S. Santosh, and A. Singla. Improved approximation algorithms for biconnected subgraphs via better lower bounding techniques. Proc. 4th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 103–111, 1993.

    Google Scholar 

  7. M. X. Goemans and D. J. Bertsimas. Survivable networks, linear programming relaxations and the parsimonious property. Mathematical Programming, 60:143–166, 1993.

    Article  MathSciNet  Google Scholar 

  8. S. Khuller and U. Vishkin. Biconnectivity approximations and graph carvings. Journal of the ACM, 41:214–235, 1994. Preliminary version in Proc. 24th Annual ACM STOC, pages 759–770, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  9. L. Lovász. A note on factor-critical graphs. Studia Sci. Math. Hungar., 7:279–280, 1972.

    MathSciNet  Google Scholar 

  10. L. Lovász and M. D. Plummer. Matching Theory. Akadémiai Kiadó, Budapest, 1986.

    MATH  Google Scholar 

  11. C. L. Monma, B. S. Munson, and W. R. Pulleyblank. Minimum-weight two-connected spanning networks. Mathematical Programming, 46:153–171, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Whitney. Nonseparable and planar graphs. Trans. Amer. Math. Soc., 34:339–362, 1932.

    Article  MATH  MathSciNet  Google Scholar 

  13. L. A. Wolsey. Heuristic analysis, linear programming and branch and bound. Mathematical Programming Study, 13:121–134, 1980

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheriyan, J., Sebő, A., Szigeti, Z. (1998). An Improved Approximation Algorithm for Minimum Size 2-Edge Connected Spanning Subgraphs. In: Bixby, R.E., Boyd, E.A., Ríos-Mercado, R.Z. (eds) Integer Programming and Combinatorial Optimization. IPCO 1998. Lecture Notes in Computer Science, vol 1412. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69346-7_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-69346-7_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64590-0

  • Online ISBN: 978-3-540-69346-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics