Abstract
Linear algebraic techniques for place/transition nets are surveyed. In particular, place and transition invariant vectors and their application to verification, proof and analysis of behavioral properties of marked Petri nets are presented. The considered properties are the non-reachability of a marking and conditions that hold true for all reachable markings. In addition, it is shown how the rank of the incidence matrix implies sufficient criteria and necessary criteria for liveness of bounded marked Petri nets.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
G. Campos, G. Chiola and M. Silva. Properties and performance bounds for closed free choice synchronized monoclass queueing networks. IEEE Transactions on Automation and Control, 36(12):1368–1382, 1991.
J. M. Colom, J. Campos and M. Silva. On Liveness Analysis Through Linear Algebraic Techniques. Dpto. Ing. Electrica e Informatica, Universidad de Zaragoza RR 90-11, 1990.
J. M. Colom and M. Silva. Improving the linearly based characterization of P/T nets. In G. Rozenberg (ed.), Advances in Petri nets 1990, Vol. 483 of Lecture Notes in Computer Science, pp. 113–145, Springer-Verlag, 1991.
J. Desel and J. Esparza. Reachability in cyclic extended free choice systems. Theoretical Computer Science, 114:93–118, 1993.
J. Desel and J. Esparza. Free Choice Petri Nets, Vol. 40 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1995.
J. Desel, K.-P. Neuendorf and M.-D. Radola. Proving non-reachability by modulo-invariants. Theoretical Computer Science, 153:49–64, 1996.
J. Desel. Another boatman story. GI Petri Net Newsletter, 12:3–6, 1985.
J. Desel. Wanted: Dead or alive? GI Petri Net Newsletter, 39:0–2, 1988.
J. Desel. A proof of the rank theorem for extended free choice nets. In K. Jensen (ed.), Application and Theory of Petri nets, Vol. 616 of Lecture Notes in Computer Science, pp. 134–153, Springer-Vertag, 1992.
J. Desel. Regular marked Petri nets. In J. van Leeuwen (ed.), Graph-Theoretic Concepts in Computer Science, Vol. 790 of Lecture Notes in Computer Science, pp. 264–275, Springer-Verlag, 1994.
J. Desel and Wolfgang Reisig. Place/transition Petri nets. Advanved Course on Petri Nets, 1996, in this volume.
J. Desel. Petrinetze, Lineare Algebra and Lineare Programmierung. Teubner-Texte zur Informatik Vol. 26, Teubner Verlag, 1998.
J. Esparza and S. Melzer. Checking system properties via Integer Programming. In H.R. Nielson (ed.), ESOP'96, Vol. 1058 of Lecture Notes in Computer Science, pp. 250–264, Springer-Verlag, 1996.
J. Esparza and M. Nielsen. Decidability issues for Petri nets. GI Petri Net Newsletter, 47:5–23, 1994.
J. Esparza. Synthesis rules for Petri nets, and how they lead to new results. In J.C.M. Baeten and J.W. Flop (eds.), CONCUR 90, Vol. 458 of Lecture Notes in Computer Science, pp. 182–198. Springer-Verlag, 1990.
J. Ezpeleta, J. M. Couvreur and M. Silva. A new technique for finding a generating family of siphons, traps and ST-components. Application to colored Petri nets. In G. Rozenberg (ed.), Advances in Petri nets 1993, Vol. 674 of Lecture Notes in Computer Science, pp. 126-147, Springer-Verlag, 1993.
M. Jantzen. Complexity of place/transition nets. In W. Brauer, W. Reisig and G. Rozenberg (eds.), Petri nets: Central Models and Their Properties, Advances in Petri Nets 1986, part I, Vol. 254 of Lecture Notes in Computer Science, pp. 413–435, Springer-Verlag, 1987.
M. Jantzen and R.. Valk. Formal properties of place/transition nets. In W. Brauer (ed.), Net Theory and Applications, Vol. 84 of Lecture Notes in Computer Science, pp. 165–212, Springer-Verlag, 1980.
R. Kannan and A. Bachem. Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix. SIAM Journal on Computing, 8:499–507, 1979.
K. Lautenbach. Liveness in Petri nets. GMD-ISF 75-02.1, Gesellschaft für Mathematik and Datenverarbeitung, Bonn, 1975.
K. Lautenbach. Linear algebraic techniques for place/transition nets. In W. Brauer, W. Reisig and G. Rozenberg (eds.), Petri nets: Central Models and their Properties, Advances in Petri nets 1986, Part I, Vol. 254 of Lecture Notes in Computer Science, pp. 142–167. Springer-Verlag, 1987.
K. Lautenbach. Linear algebraic calculation of deadlocks and traps, In H.J. Genrich, K. Voss and G. Rozenberg (Ed.), Concurrency and Nets, pp. 315–336, Springer-Verlag, 1987.
K. Lautenbach and 11. A. Schmidt. Use of Petri nets for proving correctness of concurrent process systems. In IFIP Congress 1974, pp. 187–191. North-Holland, 1974.
Y. E. Lien. Termination properties of generalized Petri nets. SIAM Journal on Computing, 5(2):251–265, 1976.
G. Memmi and G. Roucairol. Linear algebra in net theory. In W. Bracer (ed.), Net Theory and Applications, Vol. 84 of Lecture Notes in Computer Science, pp. 213–223. Springer-Verlag, 1980.
T. Murata. State equation, controllability, and maximal matchings of Petri nets. IEEE Transactions on Automation and Control, 22(3);412–416, 1977.
T. Murata. Petri nets: Properties, analysis and applications. Proc. of the IEEE, 77(4):541–580, 1989.
K.-H. Pascoletti. Diophantische Systeme and Lösungsmethoden zur Bestimmung aller Invarianten in Petri-Netzen. GMD-Berichte Nr. 160, Ol-denbourg, 1986.
J. L. Peterson. Petri nets. ACM Computing Surveys, 9(3):223–152, 1977.
J. L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice-Hall, Englewood Cliffs, 1981.
C. A. Petri. Concepts of net theory. In: Mathematical Foundations of Computer Science, Proceedings of a symposium and summer school, High Tatras, September 3–8, 1973. Math. Inst. of the Slovak Acad. of Science, pp. 137–146, 1973.
C. A. Petri. State-transition structure in physics and computation. International Journal of Theoretical Physics, 21(10/11):979–992, 1982.
C. Ramchandani. Analysis of asynchronous concurrent systems by Petri nets. PhD thesis, MIT, Dept. Electrical Engineering, Cambridge, Mass., 1974.
W. Reisig. On solving conflicts in Petri nets. In: U. Pape (ed.), Discrete Structures and Algorithms, Hanser-Verlag, pp. 241–254, 1979.
W. Reisig. Petri Nets. EATCS Monographs on Theoretical Computer Science Vol. 4, Springer-Verlag, 1985.
L. Recalde, E. Teruel and M. Silva. On well-formed analysis: The case of deterministic systems of sequential processes. In J. Desel (ed.), Structures in Concurrency Theory, Workshops in Computing, pp. 279–293, Springer-Verlag, 1995.
A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.
J. Sifakis. Structural properties of Petri nets. In J. Winkowski (ed.), Matheinatical Foundations of Computer Science, Vol. 64 of Lecture Notes in Computer Science, pp. 474–483, Springer-Verlag, 1979.
E. Teruel, M. Colom and M. Silva. Linear analysis of deadlock-freeness of Petri net models. 2nd European Control Conference, Vol. 2, pp. 513–518. North-Holland, 1993.
E. Teruel and M. Silva. Structure theory of equal conflict systems. Theoretical Computer Science, 153:271–300, 1996.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Desel, J. (1998). Basic linear algebraic techniques for place/transition nets. In: Reisig, W., Rozenberg, G. (eds) Lectures on Petri Nets I: Basic Models. ACPN 1996. Lecture Notes in Computer Science, vol 1491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-65306-6_18
Download citation
DOI: https://doi.org/10.1007/3-540-65306-6_18
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65306-6
Online ISBN: 978-3-540-49442-3
eBook Packages: Springer Book Archive