Basic linear algebraic techniques for place/transition nets | SpringerLink
Skip to main content

Basic linear algebraic techniques for place/transition nets

  • II Analysis and Synthesis
  • Chapter
  • First Online:
Lectures on Petri Nets I: Basic Models (ACPN 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1491))

Included in the following conference series:

Abstract

Linear algebraic techniques for place/transition nets are surveyed. In particular, place and transition invariant vectors and their application to verification, proof and analysis of behavioral properties of marked Petri nets are presented. The considered properties are the non-reachability of a marking and conditions that hold true for all reachable markings. In addition, it is shown how the rank of the incidence matrix implies sufficient criteria and necessary criteria for liveness of bounded marked Petri nets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. Campos, G. Chiola and M. Silva. Properties and performance bounds for closed free choice synchronized monoclass queueing networks. IEEE Transactions on Automation and Control, 36(12):1368–1382, 1991.

    Google Scholar 

  2. J. M. Colom, J. Campos and M. Silva. On Liveness Analysis Through Linear Algebraic Techniques. Dpto. Ing. Electrica e Informatica, Universidad de Zaragoza RR 90-11, 1990.

    Google Scholar 

  3. J. M. Colom and M. Silva. Improving the linearly based characterization of P/T nets. In G. Rozenberg (ed.), Advances in Petri nets 1990, Vol. 483 of Lecture Notes in Computer Science, pp. 113–145, Springer-Verlag, 1991.

    Google Scholar 

  4. J. Desel and J. Esparza. Reachability in cyclic extended free choice systems. Theoretical Computer Science, 114:93–118, 1993.

    Google Scholar 

  5. J. Desel and J. Esparza. Free Choice Petri Nets, Vol. 40 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1995.

    Google Scholar 

  6. J. Desel, K.-P. Neuendorf and M.-D. Radola. Proving non-reachability by modulo-invariants. Theoretical Computer Science, 153:49–64, 1996.

    Google Scholar 

  7. J. Desel. Another boatman story. GI Petri Net Newsletter, 12:3–6, 1985.

    Google Scholar 

  8. J. Desel. Wanted: Dead or alive? GI Petri Net Newsletter, 39:0–2, 1988.

    Google Scholar 

  9. J. Desel. A proof of the rank theorem for extended free choice nets. In K. Jensen (ed.), Application and Theory of Petri nets, Vol. 616 of Lecture Notes in Computer Science, pp. 134–153, Springer-Vertag, 1992.

    Google Scholar 

  10. J. Desel. Regular marked Petri nets. In J. van Leeuwen (ed.), Graph-Theoretic Concepts in Computer Science, Vol. 790 of Lecture Notes in Computer Science, pp. 264–275, Springer-Verlag, 1994.

    Google Scholar 

  11. J. Desel and Wolfgang Reisig. Place/transition Petri nets. Advanved Course on Petri Nets, 1996, in this volume.

    Google Scholar 

  12. J. Desel. Petrinetze, Lineare Algebra and Lineare Programmierung. Teubner-Texte zur Informatik Vol. 26, Teubner Verlag, 1998.

    Google Scholar 

  13. J. Esparza and S. Melzer. Checking system properties via Integer Programming. In H.R. Nielson (ed.), ESOP'96, Vol. 1058 of Lecture Notes in Computer Science, pp. 250–264, Springer-Verlag, 1996.

    Google Scholar 

  14. J. Esparza and M. Nielsen. Decidability issues for Petri nets. GI Petri Net Newsletter, 47:5–23, 1994.

    Google Scholar 

  15. J. Esparza. Synthesis rules for Petri nets, and how they lead to new results. In J.C.M. Baeten and J.W. Flop (eds.), CONCUR 90, Vol. 458 of Lecture Notes in Computer Science, pp. 182–198. Springer-Verlag, 1990.

    Google Scholar 

  16. J. Ezpeleta, J. M. Couvreur and M. Silva. A new technique for finding a generating family of siphons, traps and ST-components. Application to colored Petri nets. In G. Rozenberg (ed.), Advances in Petri nets 1993, Vol. 674 of Lecture Notes in Computer Science, pp. 126-147, Springer-Verlag, 1993.

    Google Scholar 

  17. M. Jantzen. Complexity of place/transition nets. In W. Brauer, W. Reisig and G. Rozenberg (eds.), Petri nets: Central Models and Their Properties, Advances in Petri Nets 1986, part I, Vol. 254 of Lecture Notes in Computer Science, pp. 413–435, Springer-Verlag, 1987.

    Google Scholar 

  18. M. Jantzen and R.. Valk. Formal properties of place/transition nets. In W. Brauer (ed.), Net Theory and Applications, Vol. 84 of Lecture Notes in Computer Science, pp. 165–212, Springer-Verlag, 1980.

    Google Scholar 

  19. R. Kannan and A. Bachem. Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix. SIAM Journal on Computing, 8:499–507, 1979.

    Google Scholar 

  20. K. Lautenbach. Liveness in Petri nets. GMD-ISF 75-02.1, Gesellschaft für Mathematik and Datenverarbeitung, Bonn, 1975.

    Google Scholar 

  21. K. Lautenbach. Linear algebraic techniques for place/transition nets. In W. Brauer, W. Reisig and G. Rozenberg (eds.), Petri nets: Central Models and their Properties, Advances in Petri nets 1986, Part I, Vol. 254 of Lecture Notes in Computer Science, pp. 142–167. Springer-Verlag, 1987.

    Google Scholar 

  22. K. Lautenbach. Linear algebraic calculation of deadlocks and traps, In H.J. Genrich, K. Voss and G. Rozenberg (Ed.), Concurrency and Nets, pp. 315–336, Springer-Verlag, 1987.

    Google Scholar 

  23. K. Lautenbach and 11. A. Schmidt. Use of Petri nets for proving correctness of concurrent process systems. In IFIP Congress 1974, pp. 187–191. North-Holland, 1974.

    Google Scholar 

  24. Y. E. Lien. Termination properties of generalized Petri nets. SIAM Journal on Computing, 5(2):251–265, 1976.

    Google Scholar 

  25. G. Memmi and G. Roucairol. Linear algebra in net theory. In W. Bracer (ed.), Net Theory and Applications, Vol. 84 of Lecture Notes in Computer Science, pp. 213–223. Springer-Verlag, 1980.

    Google Scholar 

  26. T. Murata. State equation, controllability, and maximal matchings of Petri nets. IEEE Transactions on Automation and Control, 22(3);412–416, 1977.

    Google Scholar 

  27. T. Murata. Petri nets: Properties, analysis and applications. Proc. of the IEEE, 77(4):541–580, 1989.

    Google Scholar 

  28. K.-H. Pascoletti. Diophantische Systeme and Lösungsmethoden zur Bestimmung aller Invarianten in Petri-Netzen. GMD-Berichte Nr. 160, Ol-denbourg, 1986.

    Google Scholar 

  29. J. L. Peterson. Petri nets. ACM Computing Surveys, 9(3):223–152, 1977.

    Google Scholar 

  30. J. L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice-Hall, Englewood Cliffs, 1981.

    Google Scholar 

  31. C. A. Petri. Concepts of net theory. In: Mathematical Foundations of Computer Science, Proceedings of a symposium and summer school, High Tatras, September 3–8, 1973. Math. Inst. of the Slovak Acad. of Science, pp. 137–146, 1973.

    Google Scholar 

  32. C. A. Petri. State-transition structure in physics and computation. International Journal of Theoretical Physics, 21(10/11):979–992, 1982.

    Google Scholar 

  33. C. Ramchandani. Analysis of asynchronous concurrent systems by Petri nets. PhD thesis, MIT, Dept. Electrical Engineering, Cambridge, Mass., 1974.

    Google Scholar 

  34. W. Reisig. On solving conflicts in Petri nets. In: U. Pape (ed.), Discrete Structures and Algorithms, Hanser-Verlag, pp. 241–254, 1979.

    Google Scholar 

  35. W. Reisig. Petri Nets. EATCS Monographs on Theoretical Computer Science Vol. 4, Springer-Verlag, 1985.

    Google Scholar 

  36. L. Recalde, E. Teruel and M. Silva. On well-formed analysis: The case of deterministic systems of sequential processes. In J. Desel (ed.), Structures in Concurrency Theory, Workshops in Computing, pp. 279–293, Springer-Verlag, 1995.

    Google Scholar 

  37. A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

    Google Scholar 

  38. J. Sifakis. Structural properties of Petri nets. In J. Winkowski (ed.), Matheinatical Foundations of Computer Science, Vol. 64 of Lecture Notes in Computer Science, pp. 474–483, Springer-Verlag, 1979.

    Google Scholar 

  39. E. Teruel, M. Colom and M. Silva. Linear analysis of deadlock-freeness of Petri net models. 2nd European Control Conference, Vol. 2, pp. 513–518. North-Holland, 1993.

    Google Scholar 

  40. E. Teruel and M. Silva. Structure theory of equal conflict systems. Theoretical Computer Science, 153:271–300, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang Reisig Grzegorz Rozenberg

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Desel, J. (1998). Basic linear algebraic techniques for place/transition nets. In: Reisig, W., Rozenberg, G. (eds) Lectures on Petri Nets I: Basic Models. ACPN 1996. Lecture Notes in Computer Science, vol 1491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-65306-6_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-65306-6_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65306-6

  • Online ISBN: 978-3-540-49442-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics