Improving Inductive learning in real-world domains through the identification of dependencies: The TIM Framework | SpringerLink
Skip to main content

Improving Inductive learning in real-world domains through the identification of dependencies: The TIM Framework

  • 3 Machine Learning
  • Conference paper
  • First Online:
Tasks and Methods in Applied Artificial Intelligence (IEA/AIE 1998)

Abstract

In this paper we describe TIM (Total Induction Method), a framework that empowers inductive learning in real domains by the construction of new higher level features based on the relations between the descriptors of the initial training set. A new method, named FDD, for discovering functional dependencies within the data is outlined, and details regarding its relevance for constructive learning are provided. Two examples of their application in real - world domains are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Quinlan,J.R. “Learning Efficient Classification Procedures and their Application to Chess End Games”. Machine Learning: an Artificial Intelligence ApproachVolumen/no: 1Pag. 463–482 1983

    Google Scholar 

  2. Michalski, R.S. “A Theory and Methodology of Inductive Learning”. Machine Learning: an Artificial Intelligence Approach. Volumen/no: 1. Pag. 83–134. 1983.

    Google Scholar 

  3. Peña, D. “Estadística: modelos y métodos”. Ed. Alianza Universidad. 1992

    Google Scholar 

  4. Lippmann, R.P. “An Introduction to Computing with Neural Networks”. IEEE ASSP Magazine. Volumen/no: Abril. Pag. 4–22.1987.

    Google Scholar 

  5. Quinlan, J.R. “C4.5: Programs for Machine Learning”. Ed. Morgan Kaufmann. 1993

    Google Scholar 

  6. Michalski, R.S. y Kodratoff, Y. “Research in Machine Learning: Recent Progress, Classification of Methods, and Future Directions”. Machine Learning: An Artificial Intelligence Approach. Volumen/no: 3Pag. 1–30.1990

    Google Scholar 

  7. Bloomfield, B.P. “Capturing expertise by rule induction”. Knowledge Engineering Review. Volumen/no: 1/4.1986

    Google Scholar 

  8. Montes, C. “Feature Construction in Decision Tree Induction”. Research & Actvities Collection. Center for the Study of Language and Information. Stanford University. May, 1995.

    Google Scholar 

  9. Press, W.H., Tenkolsky, S.A., Vetterling, W.T. y Flannery, B.P. “Numerical recipes in C: the art of scientific computing.”. Ed. Cambridge Press. 1992.

    Google Scholar 

  10. Myers, R.H. “Clasical and modern regresion with application”. Ed. Duxbury Press. 1986.

    Google Scholar 

  11. Draper, N.R. y Smith, H. “Applied regression analysis”. Ed. Wiley. 1981.

    Google Scholar 

  12. Montes, C. “MITO: Método de Inducción Total”. Tesis Doctoral. Facultad de Informática. Universidad Politécnica de Madrid. España. 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Angel Pasqual del Pobil José Mira Moonis Ali

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caraça-Valente, J.P., Montes, C. (1998). Improving Inductive learning in real-world domains through the identification of dependencies: The TIM Framework. In: Pasqual del Pobil, A., Mira, J., Ali, M. (eds) Tasks and Methods in Applied Artificial Intelligence. IEA/AIE 1998. Lecture Notes in Computer Science, vol 1416. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-64574-8_431

Download citation

  • DOI: https://doi.org/10.1007/3-540-64574-8_431

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64574-0

  • Online ISBN: 978-3-540-69350-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics