Abstract
This paper presents a static semantic analysis for CASL, the Common Algebraic Specification Language. Abstract syntax trees are generated including subsorts and overloaded functions and predicates. The static semantic analysis, through the implementation of an overload resolution algorithm, checks and qualifies these abstract syntax trees. The result is a fully qualified CASL abstract syntax tree where the over loading has been resolved. This abstract syntax tree corresponds to a theory in the institution underlying CAR, subsorted partial first-order logic (SubPFOL).
Two ways of embedding SubPFOL in higher-order logic (HOL) of the logical framework Isabelle are discussed: the first one from SubPFOL to HOL via PFOL (partial first-order logic) first drops subsorting and then partiality, and the second one is the counterpart via SubFOL (subsorted first-order logic). Finally, we sketch an integration of the embedding of CASL into the UniForM Workbench.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. Bidoit, C. Choppy, B. Krieg-Brückner, P. D. Mosses, and F. Voisin. Concrete syntax for CASL, basic and structured specifications. Postscript11, December 1997.
P. Burmeister. A model theoretic approach to partial algebras. Akademie Verlag, Berlin, 1986.
M. Cerioli, A. Haxthausen, B. Krieg-Briickner, and T. Mossakowski. Permissive subsorted partial logic in CASL. In M. Johnson, editor, Algebraic methodology and software technology: 6th international conference, AMAST 97, volume 1349 of Lecture Notes in Computer Science. Springer-Verlag, 1997.
M. Cerioli and J. Meseguer. May I borrow your logic? (transporting logical structures along maps). Theoretical Computer Science, 173:311–347, 1997.
M. Cerioli, T. Mossakowski, and H. Reichel. From total equational to partial first order. In E. Astesiano, H.-J. Kreowski, and B. Krieg-Brückner, editors, Algebraic Foundations of Systems Specifications. 1997. To appear12.
CoFI task group on Language Design. CASL-The CoFI Algebraic Specification Language-Summary. COFI Document: CASL/Summary. WWW13, FTP14 September 1997.
CoFI task group on Semantics. CASL-The CoFI Algebraic Specification Language (version 0.97)-Semantics. CoFI Note: S-6. WWW15, FTP16, July 1997.
J. A. Goguen and J. Meseguer. Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theoretical Computer Science, 105:217–273, 1992.
B. Hoffmann and B. Krieg-Brückner. Program Development by Specification and Transformation. LNCS 690. Springer Verlag, 1993.
Kolyang, C. Lüth, T. Meier, and B. Wolff. TAS and IsaWin: Generic interfaces for transformational program development and theorem proving. In M. Bidoit and M. Dauchet, editors, Proceedings of the Seventh International Joint Conference on the Theory and Practice of Software Development (TAPSOFT'97), pages 855–858. Springer-Verlag LNCS 1214, 1997.
Kolyang and T. Mossakowski. Implementation of CASL into Isabelle/HOL. Bremen University17, 1997.
Kolyang, T. Santen, and B. Wolff. Correct and user-friendly implementations of transformation systems. In M. C. Gaudel and J. Woodcock, editors, Formal Methods Europe, LNCS 1051, pages 629-648. Springer Verlag, 1996.
Kolyang, T. Santen, and B. Wolff. A structure preserving encoding of Z in Isabelle. In J. von. Wright, J. Grundy, and J. Harrison, editors, Theorem Proving in Higher Order Logics, LNCS 1125, pages 283–298. Springer Verlag, 1996.
B. Krieg-Brückner, J. Peleska, E.-R. Olderog, D. Balzer, and A. Baer. UniForM Workbench-Universelle Entwicklungsumgebung für formale Methoden. Technischer Bericht 8/95, Universität Bremen, 1995. English version in: Statusseminar Softwaretechnologie BMBF18.
J. Meseguer. General logics. In Logic Colloquium 87, pages 275–329. North Holland, 1989.
T. Mossakowski. Equivalences among various logical frameworks of partial algebras. In H. K. Büning, editor, Computer Science Logic. 9th Workshop, (,SL'95. Paderborn, Germany, September 1995, Selected Papers, volume 1092 of Lecture Notes in Computer Science, pages 403–433. Springer Verlag, 1996.
P. D. Mosses. CoFI: The common framework initiative for algebraic specification and development. In M. Bidoit and M. Dauchet, editors, TAPSOFT'97, volume 1214 of LNCS, pages 115–137. Springer-Verlag, 1997.
L. C. Paulson. Isabelle-A Generic Theorem Prover. Number 828 in LNCS. Springer Verlag, 1994.
D. S. Scott. Identity and existence in intuitionistic logic. In M. Fourman, C. Mulvey, and D. Scott, editors, Application of Sheaves, volume 753 of Lecture Notes in Mathematics, pages 660–696. Springer Verlag, 1979.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mossakowski, T., Kolyang, Krieg-Brückner, B. (1998). Static semantic analysis and theorem proving for CASL. In: Presicce, F.P. (eds) Recent Trends in Algebraic Development Techniques. WADT 1997. Lecture Notes in Computer Science, vol 1376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-64299-4_43
Download citation
DOI: https://doi.org/10.1007/3-540-64299-4_43
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64299-2
Online ISBN: 978-3-540-69719-0
eBook Packages: Springer Book Archive