Abstract
We present a new, efficient stereo algorithm addressing robust disparity estimation in the presence of occlusions. The algorithm uses multiple windows and left-right consistency to compute disparity and its associated uncertainty. We demonstrate and discuss performances with both synthetic and real stereo pairs, and show how our results improve on those of closely related techniques for both robustness and efficiency.
Chapter PDF
Similar content being viewed by others
References
P. Anandan. A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision, 2:283–310, 1989.
I. J. Cox, S. Hingorani, B. M. Maggs, and S. B. Rao. A maximum likelihood stereo algorithm. Computer Vision and Image Understanding, 63(3):542–567, May 1996.
O. Faugeras, B. Hotz, H. Mathieu, T. Viéville, Z. Zhang, P. Fua, E. Théron, L. Moll, G. Berry, J. Vuillemin, P. Bertin, and C. Proy. Real-time correlation-based stereo: algorithm, implementation and applications. Technical Report 2013, Unité de recherche INRIA Sophia-Antipolis, Août 1993.
P. Fua. Combining stereo and monocular information to compute dense depth maps that preserve depth discontinuities. In Proceedings of the International Joint Conference on Artificial Intelligence, Sydney, Australia, August 1991.
A Fusiello, E. Trucco, and A. Verri. Rectification with unconstrained stereo geometry. Submitted to ICCV'98.
W.E.L. Grimson. Computational experiments with a feature based stereo algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7(1):1734, 1985.
S. S. Intille and A. F. Bobick. Disparity-space images and large occlusion stereo. In Jan-Olof Eklundh, editor, European Conference on Computer Vision, pages 179–186, Stockholm, Sweden, May 1994. Springer-Verlag.
M. R. M. Jenkin, A. D. Jepson, and J. K. Tsotsos. Techniques for disparity measurements. CVGIP: Image Understanding, 53(1):14–30, 1991.
T. Kanade and M. Okutomi. A stereo matching algorithm with an adaptive window: Theory and experiments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(9):920–932, September 1994.
J. J. Little and W. E. Gillett. Direct evidence for occlusions in stereo and motion. Image and Vision Computing, 8(4):328–340, 1990.
L. Matthies, T. Kanade, and R. Szelisky. Kalman filter based algorithms for estimating depth from image sequences. International Journal of Computer Vision, 3:209–236, 1989.
Y. Ohta and T. Kanade. Stereo by intra-and inter-scanline search using dynamic programming. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7(2):139–154, 1985.
E. Trucco, V. Roberto, S. Tinonin, and M. Corbatto. SSD disparity estimation for dynamic stereo. In R. B. Fisher and E. Trucco, editors, Proceedings of the British Machine Vision Conference, pages 342–352. BMVA Press, 1996.
Y. Yang and A. L. Yuille. Multilevel enhancement and detection of stereo disparity surfaces. Artificial Intelligence, 78(1–2):121–145, October 1995.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fusiello, A., Roberto, V., Trucco, E. (1997). Experiments with a new area-based stereo algorithm. In: Del Bimbo, A. (eds) Image Analysis and Processing. ICIAP 1997. Lecture Notes in Computer Science, vol 1310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63507-6_259
Download citation
DOI: https://doi.org/10.1007/3-540-63507-6_259
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63507-9
Online ISBN: 978-3-540-69585-1
eBook Packages: Springer Book Archive